Step |
Hyp |
Ref |
Expression |
1 |
|
rabexg |
⊢ ( 𝐵 ∈ 𝑀 → { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V ) |
2 |
|
ssrab2 |
⊢ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 |
3 |
2
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ) |
4 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
5 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 |
6 |
|
sbceq2a |
⊢ ( 𝑤 = 𝑥 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
7 |
6
|
rspcev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) |
8 |
7
|
ancoms |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) |
9 |
8
|
anim1ci |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
10 |
9
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
11 |
10
|
ancoms |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
12 |
|
sbceq2a |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
13 |
12
|
sbcbidv |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
15 |
14
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
16 |
11 15
|
sylibr |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ) |
17 |
|
sbceq2a |
⊢ ( 𝑣 = 𝑦 → ( [ 𝑣 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
18 |
17
|
rspcev |
⊢ ( ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∧ 𝜑 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ) |
19 |
16 18
|
sylancom |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ) |
20 |
|
nfcv |
⊢ Ⅎ 𝑣 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
21 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
22 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑤 |
23 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 |
24 |
22 23
|
nfsbcw |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
25 |
21 24
|
nfrex |
⊢ Ⅎ 𝑦 ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
26 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
27 |
25 26
|
nfrabw |
⊢ Ⅎ 𝑦 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
28 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 |
29 |
|
nfv |
⊢ Ⅎ 𝑣 𝜑 |
30 |
20 27 28 29 17
|
cbvrexfw |
⊢ ( ∃ 𝑣 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
31 |
19 30
|
sylib |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜑 ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
32 |
31
|
exp31 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) ) |
33 |
4 5 32
|
rexlimd |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
34 |
33
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) |
35 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 |
36 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
37 |
35 36 6
|
cbvrexw |
⊢ ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) |
38 |
14 37
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
39 |
38
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
40 |
39
|
simprbi |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
41 |
40
|
rgen |
⊢ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 |
42 |
41
|
a1i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) |
43 |
3 34 42
|
3jca |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
44 |
|
sseq1 |
⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( 𝑐 ⊆ 𝐵 ↔ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ) ) |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
46 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
47 |
45 46
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
48 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐵 |
49 |
47 48
|
nfrabw |
⊢ Ⅎ 𝑥 { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
50 |
49
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } |
51 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑐 |
52 |
51 27
|
rexeqf |
⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
53 |
50 52
|
ralbid |
⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ) ) |
54 |
51 27
|
raleqf |
⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
55 |
44 53 54
|
3anbi123d |
⊢ ( 𝑐 = { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } → ( ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
56 |
55
|
spcegv |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V → ( ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) ) |
57 |
56
|
imp |
⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∈ V ∧ ( { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } 𝜑 ∧ ∀ 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ∃ 𝑤 ∈ 𝐴 [ 𝑤 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 } ∃ 𝑥 ∈ 𝐴 𝜑 ) ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
58 |
1 43 57
|
syl2an |
⊢ ( ( 𝐵 ∈ 𝑀 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑐 ( 𝑐 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝑐 𝜑 ∧ ∀ 𝑦 ∈ 𝑐 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |