Metamath Proof Explorer


Theorem indi

Description: Distributive law for intersection over union. Exercise 10 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion indi ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 andi ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∨ ( 𝑥𝐴𝑥𝐶 ) ) )
2 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
3 elin ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴𝑥𝐶 ) )
4 2 3 orbi12i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥 ∈ ( 𝐴𝐶 ) ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∨ ( 𝑥𝐴𝑥𝐶 ) ) )
5 1 4 bitr4i ( ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥 ∈ ( 𝐴𝐶 ) ) )
6 elun ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵𝑥𝐶 ) )
7 6 anbi2i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ ( 𝑥𝐴 ∧ ( 𝑥𝐵𝑥𝐶 ) ) )
8 elun ( 𝑥 ∈ ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴𝐵 ) ∨ 𝑥 ∈ ( 𝐴𝐶 ) ) )
9 5 7 8 3bitr4i ( ( 𝑥𝐴𝑥 ∈ ( 𝐵𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) ) )
10 9 ineqri ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∪ ( 𝐴𝐶 ) )