Description: Intersection with class difference. Theorem 34 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | indif | ⊢ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin4 | ⊢ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ) | |
2 | dfin4 | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) | |
3 | 2 | difeq2i | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴 ∖ 𝐵 ) ) ) |
4 | difin | ⊢ ( 𝐴 ∖ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
5 | 1 3 4 | 3eqtr2i | ⊢ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) |