Metamath Proof Explorer


Theorem indif

Description: Intersection with class difference. Theorem 34 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)

Ref Expression
Assertion indif ( 𝐴 ∩ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 dfin4 ( 𝐴 ∩ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴𝐵 ) ) )
2 dfin4 ( 𝐴𝐵 ) = ( 𝐴 ∖ ( 𝐴𝐵 ) )
3 2 difeq2i ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴 ∖ ( 𝐴𝐵 ) ) )
4 difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
5 1 3 4 3eqtr2i ( 𝐴 ∩ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )