Metamath Proof Explorer


Theorem indif2

Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009)

Ref Expression
Assertion indif2 ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )

Proof

Step Hyp Ref Expression
1 inass ( ( 𝐴𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) )
2 invdif ( ( 𝐴𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )
3 invdif ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵𝐶 )
4 3 ineq2i ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∩ ( 𝐵𝐶 ) )
5 1 2 4 3eqtr3ri ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )