Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indif2 | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) | |
| 2 | invdif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) | |
| 3 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
| 4 | 3 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) |
| 5 | 1 2 4 | 3eqtr3ri | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) |