Description: Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | indif2 | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) | |
2 | invdif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( V ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) | |
3 | invdif | ⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = ( 𝐵 ∖ 𝐶 ) | |
4 | 3 | ineq2i | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) |
5 | 1 2 4 | 3eqtr3ri | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) |