Metamath Proof Explorer


Theorem indifbi

Description: Two ways to express equality relative to a class A . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Assertion indifbi ( ( 𝐴𝐵 ) = ( 𝐴𝐶 ) ↔ ( 𝐴𝐵 ) = ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 inss1 ( 𝐴𝐵 ) ⊆ 𝐴
2 inss1 ( 𝐴𝐶 ) ⊆ 𝐴
3 rcompleq ( ( ( 𝐴𝐵 ) ⊆ 𝐴 ∧ ( 𝐴𝐶 ) ⊆ 𝐴 ) → ( ( 𝐴𝐵 ) = ( 𝐴𝐶 ) ↔ ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴𝐶 ) ) ) )
4 1 2 3 mp2an ( ( 𝐴𝐵 ) = ( 𝐴𝐶 ) ↔ ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴𝐶 ) ) )
5 difin ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴𝐵 )
6 difin ( 𝐴 ∖ ( 𝐴𝐶 ) ) = ( 𝐴𝐶 )
7 5 6 eqeq12i ( ( 𝐴 ∖ ( 𝐴𝐵 ) ) = ( 𝐴 ∖ ( 𝐴𝐶 ) ) ↔ ( 𝐴𝐵 ) = ( 𝐴𝐶 ) )
8 4 7 bitri ( ( 𝐴𝐵 ) = ( 𝐴𝐶 ) ↔ ( 𝐴𝐵 ) = ( 𝐴𝐶 ) )