Metamath Proof Explorer


Theorem indifcom

Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Assertion indifcom ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
2 1 difeq1i ( ( 𝐴𝐵 ) ∖ 𝐶 ) = ( ( 𝐵𝐴 ) ∖ 𝐶 )
3 indif2 ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( ( 𝐴𝐵 ) ∖ 𝐶 )
4 indif2 ( 𝐵 ∩ ( 𝐴𝐶 ) ) = ( ( 𝐵𝐴 ) ∖ 𝐶 )
5 2 3 4 3eqtr4i ( 𝐴 ∩ ( 𝐵𝐶 ) ) = ( 𝐵 ∩ ( 𝐴𝐶 ) )