Description: Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indifcom | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐵 ∩ ( 𝐴 ∖ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 2 | 1 | difeq1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) = ( ( 𝐵 ∩ 𝐴 ) ∖ 𝐶 ) |
| 3 | indif2 | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) | |
| 4 | indif2 | ⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐵 ∩ 𝐴 ) ∖ 𝐶 ) | |
| 5 | 2 3 4 | 3eqtr4i | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐶 ) ) = ( 𝐵 ∩ ( 𝐴 ∖ 𝐶 ) ) |