Metamath Proof Explorer


Theorem indifdir

Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by BTernaryTau, 14-Aug-2024)

Ref Expression
Assertion indifdir ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 indifdi ( 𝐶 ∩ ( 𝐴𝐵 ) ) = ( ( 𝐶𝐴 ) ∖ ( 𝐶𝐵 ) )
2 incom ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( 𝐶 ∩ ( 𝐴𝐵 ) )
3 incom ( 𝐴𝐶 ) = ( 𝐶𝐴 )
4 incom ( 𝐵𝐶 ) = ( 𝐶𝐵 )
5 3 4 difeq12i ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) ) = ( ( 𝐶𝐴 ) ∖ ( 𝐶𝐵 ) )
6 1 2 5 3eqtr4i ( ( 𝐴𝐵 ) ∩ 𝐶 ) = ( ( 𝐴𝐶 ) ∖ ( 𝐵𝐶 ) )