Description: Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011) (Revised by BTernaryTau, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indifdir | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 ∩ 𝐶 ) ∖ ( 𝐵 ∩ 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indifdi | ⊢ ( 𝐶 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐶 ∩ 𝐴 ) ∖ ( 𝐶 ∩ 𝐵 ) ) | |
| 2 | incom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ( 𝐶 ∩ ( 𝐴 ∖ 𝐵 ) ) | |
| 3 | incom | ⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐴 ) | |
| 4 | incom | ⊢ ( 𝐵 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐵 ) | |
| 5 | 3 4 | difeq12i | ⊢ ( ( 𝐴 ∩ 𝐶 ) ∖ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐶 ∩ 𝐴 ) ∖ ( 𝐶 ∩ 𝐵 ) ) | 
| 6 | 1 2 5 | 3eqtr4i | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐶 ) = ( ( 𝐴 ∩ 𝐶 ) ∖ ( 𝐵 ∩ 𝐶 ) ) |