Step |
Hyp |
Ref |
Expression |
1 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) |
2 |
|
difundir |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ∖ 𝐶 ) = ( ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ) |
3 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
4 |
3
|
difeq1i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ∖ 𝐶 ) = ( 𝐴 ∖ 𝐶 ) |
5 |
|
uncom |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ) = ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) |
6 |
2 4 5
|
3eqtr3i |
⊢ ( 𝐴 ∖ 𝐶 ) = ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) |
7 |
6
|
uneq2i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) ) |
8 |
|
unass |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) ) |
9 |
|
undifabs |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ) = ( 𝐴 ∖ 𝐵 ) |
10 |
9
|
uneq1i |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∖ 𝐵 ) ∖ 𝐶 ) ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) |
11 |
7 8 10
|
3eqtr2i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐴 ∖ 𝐶 ) ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) |
12 |
|
uncom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ) = ( ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ∪ ( 𝐴 ∖ 𝐵 ) ) |
13 |
1 11 12
|
3eqtrri |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐶 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐵 ∩ 𝐶 ) ) |