Description: The indiscrete topology (or trivial topology) on any set is connected. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indisconn | ⊢ { ∅ , 𝐴 } ∈ Conn | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indistop | ⊢ { ∅ , 𝐴 } ∈ Top | |
| 2 | inss1 | ⊢ ( { ∅ , 𝐴 } ∩ ( Clsd ‘ { ∅ , 𝐴 } ) ) ⊆ { ∅ , 𝐴 } | |
| 3 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 4 | 2 3 | sseqtrri | ⊢ ( { ∅ , 𝐴 } ∩ ( Clsd ‘ { ∅ , 𝐴 } ) ) ⊆ { ∅ , ( I ‘ 𝐴 ) } | 
| 5 | indisuni | ⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } | |
| 6 | 5 | isconn2 | ⊢ ( { ∅ , 𝐴 } ∈ Conn ↔ ( { ∅ , 𝐴 } ∈ Top ∧ ( { ∅ , 𝐴 } ∩ ( Clsd ‘ { ∅ , 𝐴 } ) ) ⊆ { ∅ , ( I ‘ 𝐴 ) } ) ) | 
| 7 | 1 4 6 | mpbir2an | ⊢ { ∅ , 𝐴 } ∈ Conn |