Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
f1of |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) |
3 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) |
4 |
|
vex |
⊢ 𝑓 ∈ V |
5 |
4
|
dmex |
⊢ dom 𝑓 ∈ V |
6 |
3 5
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
7 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
8 |
|
fornex |
⊢ ( 𝐴 ∈ V → ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |
9 |
6 7 8
|
sylc |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
10 |
9 6
|
elmapd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
11 |
2 10
|
mpbird |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) |
12 |
|
indistopon |
⊢ ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |
13 |
6 12
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |
14 |
|
cnindis |
⊢ ( ( { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐵 ∈ V ) → ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) = ( 𝐵 ↑m 𝐴 ) ) |
15 |
13 9 14
|
syl2anc |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) = ( 𝐵 ↑m 𝐴 ) ) |
16 |
11 15
|
eleqtrrd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 ∈ ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) ) |
17 |
|
f1ocnv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
18 |
|
f1of |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) |
19 |
17 18
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) |
20 |
6 9
|
elmapd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↔ ◡ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
21 |
19 20
|
mpbird |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ) |
22 |
|
indistopon |
⊢ ( 𝐵 ∈ V → { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) ) |
23 |
9 22
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) ) |
24 |
|
cnindis |
⊢ ( ( { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐴 ∈ V ) → ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m 𝐵 ) ) |
25 |
23 6 24
|
syl2anc |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) = ( 𝐴 ↑m 𝐵 ) ) |
26 |
21 25
|
eleqtrrd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 ∈ ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) ) |
27 |
|
ishmeo |
⊢ ( 𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) ↔ ( 𝑓 ∈ ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) ∧ ◡ 𝑓 ∈ ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) ) ) |
28 |
16 26 27
|
sylanbrc |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) ) |
29 |
|
hmphi |
⊢ ( 𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } ) |
30 |
28 29
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } ) |
31 |
30
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } ) |
32 |
1 31
|
sylbi |
⊢ ( 𝐴 ≈ 𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } ) |