Metamath Proof Explorer


Theorem indishmph

Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008) (Proof shortened by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion indishmph ( 𝐴𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } )

Proof

Step Hyp Ref Expression
1 bren ( 𝐴𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 )
2 f1of ( 𝑓 : 𝐴1-1-onto𝐵𝑓 : 𝐴𝐵 )
3 f1odm ( 𝑓 : 𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴 )
4 vex 𝑓 ∈ V
5 4 dmex dom 𝑓 ∈ V
6 3 5 eqeltrrdi ( 𝑓 : 𝐴1-1-onto𝐵𝐴 ∈ V )
7 f1ofo ( 𝑓 : 𝐴1-1-onto𝐵𝑓 : 𝐴onto𝐵 )
8 fornex ( 𝐴 ∈ V → ( 𝑓 : 𝐴onto𝐵𝐵 ∈ V ) )
9 6 7 8 sylc ( 𝑓 : 𝐴1-1-onto𝐵𝐵 ∈ V )
10 9 6 elmapd ( 𝑓 : 𝐴1-1-onto𝐵 → ( 𝑓 ∈ ( 𝐵m 𝐴 ) ↔ 𝑓 : 𝐴𝐵 ) )
11 2 10 mpbird ( 𝑓 : 𝐴1-1-onto𝐵𝑓 ∈ ( 𝐵m 𝐴 ) )
12 indistopon ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) )
13 6 12 syl ( 𝑓 : 𝐴1-1-onto𝐵 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) )
14 cnindis ( ( { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ∧ 𝐵 ∈ V ) → ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) = ( 𝐵m 𝐴 ) )
15 13 9 14 syl2anc ( 𝑓 : 𝐴1-1-onto𝐵 → ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) = ( 𝐵m 𝐴 ) )
16 11 15 eleqtrrd ( 𝑓 : 𝐴1-1-onto𝐵𝑓 ∈ ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) )
17 f1ocnv ( 𝑓 : 𝐴1-1-onto𝐵 𝑓 : 𝐵1-1-onto𝐴 )
18 f1of ( 𝑓 : 𝐵1-1-onto𝐴 𝑓 : 𝐵𝐴 )
19 17 18 syl ( 𝑓 : 𝐴1-1-onto𝐵 𝑓 : 𝐵𝐴 )
20 6 9 elmapd ( 𝑓 : 𝐴1-1-onto𝐵 → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↔ 𝑓 : 𝐵𝐴 ) )
21 19 20 mpbird ( 𝑓 : 𝐴1-1-onto𝐵 𝑓 ∈ ( 𝐴m 𝐵 ) )
22 indistopon ( 𝐵 ∈ V → { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) )
23 9 22 syl ( 𝑓 : 𝐴1-1-onto𝐵 → { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) )
24 cnindis ( ( { ∅ , 𝐵 } ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐴 ∈ V ) → ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) = ( 𝐴m 𝐵 ) )
25 23 6 24 syl2anc ( 𝑓 : 𝐴1-1-onto𝐵 → ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) = ( 𝐴m 𝐵 ) )
26 21 25 eleqtrrd ( 𝑓 : 𝐴1-1-onto𝐵 𝑓 ∈ ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) )
27 ishmeo ( 𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) ↔ ( 𝑓 ∈ ( { ∅ , 𝐴 } Cn { ∅ , 𝐵 } ) ∧ 𝑓 ∈ ( { ∅ , 𝐵 } Cn { ∅ , 𝐴 } ) ) )
28 16 26 27 sylanbrc ( 𝑓 : 𝐴1-1-onto𝐵𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) )
29 hmphi ( 𝑓 ∈ ( { ∅ , 𝐴 } Homeo { ∅ , 𝐵 } ) → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } )
30 28 29 syl ( 𝑓 : 𝐴1-1-onto𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } )
31 30 exlimiv ( ∃ 𝑓 𝑓 : 𝐴1-1-onto𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } )
32 1 31 sylbi ( 𝐴𝐵 → { ∅ , 𝐴 } ≃ { ∅ , 𝐵 } )