Metamath Proof Explorer


Theorem indislem

Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indislem { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 }

Proof

Step Hyp Ref Expression
1 fvi ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 )
2 1 preq2d ( 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } )
3 dfsn2 { ∅ } = { ∅ , ∅ }
4 3 eqcomi { ∅ , ∅ } = { ∅ }
5 fvprc ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ )
6 5 preq2d ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , ∅ } )
7 prprc2 ( ¬ 𝐴 ∈ V → { ∅ , 𝐴 } = { ∅ } )
8 4 6 7 3eqtr4a ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } )
9 2 8 pm2.61i { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 }