Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvi | ⊢ ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 ) | |
2 | 1 | preq2d | ⊢ ( 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } ) |
3 | dfsn2 | ⊢ { ∅ } = { ∅ , ∅ } | |
4 | 3 | eqcomi | ⊢ { ∅ , ∅ } = { ∅ } |
5 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ ) | |
6 | 5 | preq2d | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , ∅ } ) |
7 | prprc2 | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , 𝐴 } = { ∅ } ) | |
8 | 4 6 7 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } ) |
9 | 2 8 | pm2.61i | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |