Description: A lemma to eliminate some sethood hypotheses when dealing with the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvi | ⊢ ( 𝐴 ∈ V → ( I ‘ 𝐴 ) = 𝐴 ) | |
| 2 | 1 | preq2d | ⊢ ( 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } ) | 
| 3 | dfsn2 | ⊢ { ∅ } = { ∅ , ∅ } | |
| 4 | 3 | eqcomi | ⊢ { ∅ , ∅ } = { ∅ } | 
| 5 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( I ‘ 𝐴 ) = ∅ ) | |
| 6 | 5 | preq2d | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , ∅ } ) | 
| 7 | prprc2 | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , 𝐴 } = { ∅ } ) | |
| 8 | 4 6 7 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } ) | 
| 9 | 2 8 | pm2.61i | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } |