Metamath Proof Explorer


Theorem indistop

Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by FL, 16-Jul-2006) (Revised by Stefan Allan, 6-Nov-2008) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion indistop { ∅ , 𝐴 } ∈ Top

Proof

Step Hyp Ref Expression
1 indislem { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 }
2 fvex ( I ‘ 𝐴 ) ∈ V
3 indistopon ( ( I ‘ 𝐴 ) ∈ V → { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) )
4 2 3 ax-mp { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) )
5 4 topontopi { ∅ , ( I ‘ 𝐴 ) } ∈ Top
6 1 5 eqeltrri { ∅ , 𝐴 } ∈ Top