Description: The indiscrete topology on a set A . Part of Example 2 in Munkres p. 77. (Contributed by FL, 16-Jul-2006) (Revised by Stefan Allan, 6-Nov-2008) (Revised by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indistop | ⊢ { ∅ , 𝐴 } ∈ Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 2 | fvex | ⊢ ( I ‘ 𝐴 ) ∈ V | |
| 3 | indistopon | ⊢ ( ( I ‘ 𝐴 ) ∈ V → { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) |
| 5 | 4 | topontopi | ⊢ { ∅ , ( I ‘ 𝐴 ) } ∈ Top |
| 6 | 1 5 | eqeltrri | ⊢ { ∅ , 𝐴 } ∈ Top |