| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sspr |
⊢ ( 𝑥 ⊆ { ∅ , 𝐴 } ↔ ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ∨ ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) ) ) |
| 2 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
prid1 |
⊢ ∅ ∈ { ∅ , 𝐴 } |
| 6 |
3 5
|
eqeltri |
⊢ ∪ ∅ ∈ { ∅ , 𝐴 } |
| 7 |
2 6
|
eqeltrdi |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = ∅ → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 9 |
|
unieq |
⊢ ( 𝑥 = { ∅ } → ∪ 𝑥 = ∪ { ∅ } ) |
| 10 |
4
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 11 |
10 5
|
eqeltri |
⊢ ∪ { ∅ } ∈ { ∅ , 𝐴 } |
| 12 |
9 11
|
eqeltrdi |
⊢ ( 𝑥 = { ∅ } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 13 |
12
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { ∅ } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 14 |
8 13
|
jaod |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 15 |
|
unieq |
⊢ ( 𝑥 = { 𝐴 } → ∪ 𝑥 = ∪ { 𝐴 } ) |
| 16 |
|
unisng |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
| 17 |
15 16
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → ∪ 𝑥 = 𝐴 ) |
| 18 |
|
prid2g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 20 |
17 19
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 21 |
20
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 22 |
|
unieq |
⊢ ( 𝑥 = { ∅ , 𝐴 } → ∪ 𝑥 = ∪ { ∅ , 𝐴 } ) |
| 23 |
|
uniprg |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) |
| 24 |
4 23
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { ∅ , 𝐴 } = ( ∅ ∪ 𝐴 ) ) |
| 25 |
|
uncom |
⊢ ( ∅ ∪ 𝐴 ) = ( 𝐴 ∪ ∅ ) |
| 26 |
|
un0 |
⊢ ( 𝐴 ∪ ∅ ) = 𝐴 |
| 27 |
25 26
|
eqtri |
⊢ ( ∅ ∪ 𝐴 ) = 𝐴 |
| 28 |
24 27
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { ∅ , 𝐴 } = 𝐴 ) |
| 29 |
22 28
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 = 𝐴 ) |
| 30 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 31 |
29 30
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) |
| 32 |
31
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 = { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 33 |
21 32
|
jaod |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 34 |
14 33
|
jaod |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ∨ ( 𝑥 = { 𝐴 } ∨ 𝑥 = { ∅ , 𝐴 } ) ) → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 35 |
1 34
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 36 |
35
|
alrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ) |
| 37 |
|
vex |
⊢ 𝑥 ∈ V |
| 38 |
37
|
elpr |
⊢ ( 𝑥 ∈ { ∅ , 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) |
| 39 |
|
vex |
⊢ 𝑦 ∈ V |
| 40 |
39
|
elpr |
⊢ ( 𝑦 ∈ { ∅ , 𝐴 } ↔ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) |
| 41 |
|
simpr |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) |
| 42 |
41
|
ineq2d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) |
| 43 |
|
in0 |
⊢ ( 𝑥 ∩ ∅ ) = ∅ |
| 44 |
42 43
|
eqtrdi |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 45 |
44 5
|
eqeltrdi |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 46 |
45
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 47 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → 𝑦 = ∅ ) |
| 48 |
47
|
ineq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ( 𝑥 ∩ ∅ ) ) |
| 49 |
48 43
|
eqtrdi |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 50 |
49 5
|
eqeltrdi |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 51 |
50
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = ∅ ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 52 |
|
simpl |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → 𝑥 = ∅ ) |
| 53 |
52
|
ineq1d |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( ∅ ∩ 𝑦 ) ) |
| 54 |
|
0in |
⊢ ( ∅ ∩ 𝑦 ) = ∅ |
| 55 |
53 54
|
eqtrdi |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ∅ ) |
| 56 |
55 5
|
eqeltrdi |
⊢ ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 57 |
56
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 58 |
|
ineq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐴 ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = ( 𝐴 ∩ 𝐴 ) ) |
| 60 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 61 |
59 60
|
eqtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) = 𝐴 ) |
| 62 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → 𝐴 ∈ { ∅ , 𝐴 } ) |
| 63 |
61 62
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 64 |
63
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 65 |
46 51 57 64
|
ccased |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ∧ ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 66 |
65
|
expdimp |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ( ( 𝑦 = ∅ ∨ 𝑦 = 𝐴 ) → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 67 |
40 66
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ( 𝑦 ∈ { ∅ , 𝐴 } → ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 68 |
67
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) ) → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 69 |
68
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 = ∅ ∨ 𝑥 = 𝐴 ) → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 70 |
38 69
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ { ∅ , 𝐴 } → ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) |
| 71 |
70
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) |
| 72 |
|
prex |
⊢ { ∅ , 𝐴 } ∈ V |
| 73 |
|
istopg |
⊢ ( { ∅ , 𝐴 } ∈ V → ( { ∅ , 𝐴 } ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) ) |
| 74 |
72 73
|
mp1i |
⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ , 𝐴 } ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ { ∅ , 𝐴 } → ∪ 𝑥 ∈ { ∅ , 𝐴 } ) ∧ ∀ 𝑥 ∈ { ∅ , 𝐴 } ∀ 𝑦 ∈ { ∅ , 𝐴 } ( 𝑥 ∩ 𝑦 ) ∈ { ∅ , 𝐴 } ) ) ) |
| 75 |
36 71 74
|
mpbir2and |
⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ Top ) |
| 76 |
28
|
eqcomd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ∪ { ∅ , 𝐴 } ) |
| 77 |
|
istopon |
⊢ ( { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { ∅ , 𝐴 } ∈ Top ∧ 𝐴 = ∪ { ∅ , 𝐴 } ) ) |
| 78 |
75 76 77
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |