Metamath Proof Explorer


Theorem indistps2ALT

Description: The indiscrete topology on a set A expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 from the structural version indistps . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses indistps2ALT.a ( Base ‘ 𝐾 ) = 𝐴
indistps2ALT.j ( TopOpen ‘ 𝐾 ) = { ∅ , 𝐴 }
Assertion indistps2ALT 𝐾 ∈ TopSp

Proof

Step Hyp Ref Expression
1 indistps2ALT.a ( Base ‘ 𝐾 ) = 𝐴
2 indistps2ALT.j ( TopOpen ‘ 𝐾 ) = { ∅ , 𝐴 }
3 fvex ( Base ‘ 𝐾 ) ∈ V
4 1 3 eqeltrri 𝐴 ∈ V
5 indistopon ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) )
6 4 5 ax-mp { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 )
7 1 eqcomi 𝐴 = ( Base ‘ 𝐾 )
8 2 eqcomi { ∅ , 𝐴 } = ( TopOpen ‘ 𝐾 )
9 7 8 istps ( 𝐾 ∈ TopSp ↔ { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) )
10 6 9 mpbir 𝐾 ∈ TopSp