Description: The indiscrete topology on a set A expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 from the structural version indistps . (Contributed by NM, 24-Oct-2012) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indistps2ALT.a | ⊢ ( Base ‘ 𝐾 ) = 𝐴 | |
indistps2ALT.j | ⊢ ( TopOpen ‘ 𝐾 ) = { ∅ , 𝐴 } | ||
Assertion | indistps2ALT | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2ALT.a | ⊢ ( Base ‘ 𝐾 ) = 𝐴 | |
2 | indistps2ALT.j | ⊢ ( TopOpen ‘ 𝐾 ) = { ∅ , 𝐴 } | |
3 | fvex | ⊢ ( Base ‘ 𝐾 ) ∈ V | |
4 | 1 3 | eqeltrri | ⊢ 𝐴 ∈ V |
5 | indistopon | ⊢ ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) | |
6 | 4 5 | ax-mp | ⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) |
7 | 1 | eqcomi | ⊢ 𝐴 = ( Base ‘ 𝐾 ) |
8 | 2 | eqcomi | ⊢ { ∅ , 𝐴 } = ( TopOpen ‘ 𝐾 ) |
9 | 7 8 | istps | ⊢ ( 𝐾 ∈ TopSp ↔ { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) |
10 | 6 9 | mpbir | ⊢ 𝐾 ∈ TopSp |