Description: The indiscrete topology on a set A expressed as a topological space, using explicit structure component references. Compare with indistps and indistps2 . The advantage of this version is that the actual function for the structure is evident, and df-ndx is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base and df-tset are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | indistpsx.a | ⊢ 𝐴 ∈ V | |
indistpsx.k | ⊢ 𝐾 = { 〈 1 , 𝐴 〉 , 〈 9 , { ∅ , 𝐴 } 〉 } | ||
Assertion | indistpsx | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistpsx.a | ⊢ 𝐴 ∈ V | |
2 | indistpsx.k | ⊢ 𝐾 = { 〈 1 , 𝐴 〉 , 〈 9 , { ∅ , 𝐴 } 〉 } | |
3 | basendx | ⊢ ( Base ‘ ndx ) = 1 | |
4 | 3 | opeq1i | ⊢ 〈 ( Base ‘ ndx ) , 𝐴 〉 = 〈 1 , 𝐴 〉 |
5 | tsetndx | ⊢ ( TopSet ‘ ndx ) = 9 | |
6 | 5 | opeq1i | ⊢ 〈 ( TopSet ‘ ndx ) , { ∅ , 𝐴 } 〉 = 〈 9 , { ∅ , 𝐴 } 〉 |
7 | 4 6 | preq12i | ⊢ { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , { ∅ , 𝐴 } 〉 } = { 〈 1 , 𝐴 〉 , 〈 9 , { ∅ , 𝐴 } 〉 } |
8 | 2 7 | eqtr4i | ⊢ 𝐾 = { 〈 ( Base ‘ ndx ) , 𝐴 〉 , 〈 ( TopSet ‘ ndx ) , { ∅ , 𝐴 } 〉 } |
9 | indistopon | ⊢ ( 𝐴 ∈ V → { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) ) | |
10 | 1 9 | ax-mp | ⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ 𝐴 ) |
11 | 10 | toponunii | ⊢ 𝐴 = ∪ { ∅ , 𝐴 } |
12 | indistop | ⊢ { ∅ , 𝐴 } ∈ Top | |
13 | 8 11 12 | eltpsi | ⊢ 𝐾 ∈ TopSp |