Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indisuni | ⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indislem | ⊢ { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 } | |
| 2 | fvex | ⊢ ( I ‘ 𝐴 ) ∈ V | |
| 3 | indistopon | ⊢ ( ( I ‘ 𝐴 ) ∈ V → { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | ax-mp | ⊢ { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) | 
| 5 | 1 4 | eqeltrri | ⊢ { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) | 
| 6 | 5 | toponunii | ⊢ ( I ‘ 𝐴 ) = ∪ { ∅ , 𝐴 } |