Metamath Proof Explorer


Theorem indisuni

Description: The base set of the indiscrete topology. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion indisuni ( I ‘ 𝐴 ) = { ∅ , 𝐴 }

Proof

Step Hyp Ref Expression
1 indislem { ∅ , ( I ‘ 𝐴 ) } = { ∅ , 𝐴 }
2 fvex ( I ‘ 𝐴 ) ∈ V
3 indistopon ( ( I ‘ 𝐴 ) ∈ V → { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) ) )
4 2 3 ax-mp { ∅ , ( I ‘ 𝐴 ) } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) )
5 1 4 eqeltrri { ∅ , 𝐴 } ∈ ( TopOn ‘ ( I ‘ 𝐴 ) )
6 5 toponunii ( I ‘ 𝐴 ) = { ∅ , 𝐴 }