| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indpi.1 |
⊢ ( 𝑥 = 1o → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
indpi.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
indpi.3 |
⊢ ( 𝑥 = ( 𝑦 +N 1o ) → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
indpi.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
indpi.5 |
⊢ 𝜓 |
| 6 |
|
indpi.6 |
⊢ ( 𝑦 ∈ N → ( 𝜒 → 𝜃 ) ) |
| 7 |
|
1oex |
⊢ 1o ∈ V |
| 8 |
7
|
eqvinc |
⊢ ( 1o = 𝐴 ↔ ∃ 𝑥 ( 𝑥 = 1o ∧ 𝑥 = 𝐴 ) ) |
| 9 |
5 1
|
mpbiri |
⊢ ( 𝑥 = 1o → 𝜑 ) |
| 10 |
8 4 9
|
gencl |
⊢ ( 1o = 𝐴 → 𝜏 ) |
| 11 |
10
|
eqcoms |
⊢ ( 𝐴 = 1o → 𝜏 ) |
| 12 |
11
|
a1i |
⊢ ( 𝐴 ∈ N → ( 𝐴 = 1o → 𝜏 ) ) |
| 13 |
|
pinn |
⊢ ( 𝐴 ∈ N → 𝐴 ∈ ω ) |
| 14 |
|
elni2 |
⊢ ( 𝐴 ∈ N ↔ ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) ) |
| 15 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
| 16 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴 ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐴 ∈ ω → ( ∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴 ) ) |
| 18 |
|
df-1o |
⊢ 1o = suc ∅ |
| 19 |
18
|
sseq1i |
⊢ ( 1o ⊆ 𝐴 ↔ suc ∅ ⊆ 𝐴 ) |
| 20 |
17 19
|
imbitrrdi |
⊢ ( 𝐴 ∈ ω → ( ∅ ∈ 𝐴 → 1o ⊆ 𝐴 ) ) |
| 21 |
20
|
imp |
⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ 𝐴 ) → 1o ⊆ 𝐴 ) |
| 22 |
14 21
|
sylbi |
⊢ ( 𝐴 ∈ N → 1o ⊆ 𝐴 ) |
| 23 |
|
1onn |
⊢ 1o ∈ ω |
| 24 |
|
eleq1 |
⊢ ( 𝑥 = 1o → ( 𝑥 ∈ N ↔ 1o ∈ N ) ) |
| 25 |
|
breq2 |
⊢ ( 𝑥 = 1o → ( 1o <N 𝑥 ↔ 1o <N 1o ) ) |
| 26 |
24 25
|
anbi12d |
⊢ ( 𝑥 = 1o → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 1o ∈ N ∧ 1o <N 1o ) ) ) |
| 27 |
26 1
|
imbi12d |
⊢ ( 𝑥 = 1o → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 1o ∈ N ∧ 1o <N 1o ) → 𝜓 ) ) ) |
| 28 |
|
eleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ N ↔ 𝑦 ∈ N ) ) |
| 29 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 1o <N 𝑥 ↔ 1o <N 𝑦 ) ) |
| 30 |
28 29
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ) ) |
| 31 |
30 2
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) ) ) |
| 32 |
|
pinn |
⊢ ( 𝑥 ∈ N → 𝑥 ∈ ω ) |
| 33 |
|
eleq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ ω ↔ suc 𝑦 ∈ ω ) ) |
| 34 |
|
peano2b |
⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) |
| 35 |
33 34
|
bitr4di |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ ω ↔ 𝑦 ∈ ω ) ) |
| 36 |
32 35
|
imbitrid |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ∈ N → 𝑦 ∈ ω ) ) |
| 37 |
36
|
adantrd |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ∈ ω ) ) |
| 38 |
|
1pi |
⊢ 1o ∈ N |
| 39 |
|
ltpiord |
⊢ ( ( 1o ∈ N ∧ 𝑥 ∈ N ) → ( 1o <N 𝑥 ↔ 1o ∈ 𝑥 ) ) |
| 40 |
38 39
|
mpan |
⊢ ( 𝑥 ∈ N → ( 1o <N 𝑥 ↔ 1o ∈ 𝑥 ) ) |
| 41 |
40
|
biimpa |
⊢ ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o ∈ 𝑥 ) |
| 42 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 1o ∈ 𝑥 ↔ 1o ∈ suc 𝑦 ) ) |
| 43 |
|
elsuci |
⊢ ( 1o ∈ suc 𝑦 → ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) ) |
| 44 |
|
ne0i |
⊢ ( 1o ∈ 𝑦 → 𝑦 ≠ ∅ ) |
| 45 |
|
0lt1o |
⊢ ∅ ∈ 1o |
| 46 |
|
eleq2 |
⊢ ( 1o = 𝑦 → ( ∅ ∈ 1o ↔ ∅ ∈ 𝑦 ) ) |
| 47 |
45 46
|
mpbii |
⊢ ( 1o = 𝑦 → ∅ ∈ 𝑦 ) |
| 48 |
47
|
ne0d |
⊢ ( 1o = 𝑦 → 𝑦 ≠ ∅ ) |
| 49 |
44 48
|
jaoi |
⊢ ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝑦 ≠ ∅ ) |
| 50 |
43 49
|
syl |
⊢ ( 1o ∈ suc 𝑦 → 𝑦 ≠ ∅ ) |
| 51 |
42 50
|
biimtrdi |
⊢ ( 𝑥 = suc 𝑦 → ( 1o ∈ 𝑥 → 𝑦 ≠ ∅ ) ) |
| 52 |
41 51
|
syl5 |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ≠ ∅ ) ) |
| 53 |
37 52
|
jcad |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → ( 𝑦 ∈ ω ∧ 𝑦 ≠ ∅ ) ) ) |
| 54 |
|
elni |
⊢ ( 𝑦 ∈ N ↔ ( 𝑦 ∈ ω ∧ 𝑦 ≠ ∅ ) ) |
| 55 |
53 54
|
imbitrrdi |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝑦 ∈ N ) ) |
| 56 |
|
simpr |
⊢ ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o <N 𝑥 ) |
| 57 |
|
breq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 1o <N 𝑥 ↔ 1o <N suc 𝑦 ) ) |
| 58 |
56 57
|
imbitrid |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 1o <N suc 𝑦 ) ) |
| 59 |
55 58
|
jcad |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) ) ) |
| 60 |
|
addclpi |
⊢ ( ( 𝑦 ∈ N ∧ 1o ∈ N ) → ( 𝑦 +N 1o ) ∈ N ) |
| 61 |
38 60
|
mpan2 |
⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) ∈ N ) |
| 62 |
|
addpiord |
⊢ ( ( 𝑦 ∈ N ∧ 1o ∈ N ) → ( 𝑦 +N 1o ) = ( 𝑦 +o 1o ) ) |
| 63 |
38 62
|
mpan2 |
⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) = ( 𝑦 +o 1o ) ) |
| 64 |
|
pion |
⊢ ( 𝑦 ∈ N → 𝑦 ∈ On ) |
| 65 |
|
oa1suc |
⊢ ( 𝑦 ∈ On → ( 𝑦 +o 1o ) = suc 𝑦 ) |
| 66 |
64 65
|
syl |
⊢ ( 𝑦 ∈ N → ( 𝑦 +o 1o ) = suc 𝑦 ) |
| 67 |
63 66
|
eqtrd |
⊢ ( 𝑦 ∈ N → ( 𝑦 +N 1o ) = suc 𝑦 ) |
| 68 |
67
|
eqeq2d |
⊢ ( 𝑦 ∈ N → ( 𝑥 = ( 𝑦 +N 1o ) ↔ 𝑥 = suc 𝑦 ) ) |
| 69 |
68
|
biimparc |
⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → 𝑥 = ( 𝑦 +N 1o ) ) |
| 70 |
69
|
eleq1d |
⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → ( 𝑥 ∈ N ↔ ( 𝑦 +N 1o ) ∈ N ) ) |
| 71 |
61 70
|
imbitrrid |
⊢ ( ( 𝑥 = suc 𝑦 ∧ 𝑦 ∈ N ) → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) |
| 72 |
71
|
ex |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑦 ∈ N → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) ) |
| 73 |
72
|
pm2.43d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑦 ∈ N → 𝑥 ∈ N ) ) |
| 74 |
57
|
biimprd |
⊢ ( 𝑥 = suc 𝑦 → ( 1o <N suc 𝑦 → 1o <N 𝑥 ) ) |
| 75 |
73 74
|
anim12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ) ) |
| 76 |
59 75
|
impbid |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) ) ) |
| 77 |
76
|
imbi1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜑 ) ) ) |
| 78 |
68 3
|
biimtrrdi |
⊢ ( 𝑦 ∈ N → ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) ) |
| 80 |
79
|
com12 |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → ( 𝜑 ↔ 𝜃 ) ) ) |
| 81 |
80
|
pm5.74d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 82 |
77 81
|
bitrd |
⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 83 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ N ↔ 𝐴 ∈ N ) ) |
| 84 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 1o <N 𝑥 ↔ 1o <N 𝐴 ) ) |
| 85 |
83 84
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) ↔ ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) ) ) |
| 86 |
85 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ N ∧ 1o <N 𝑥 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) ) |
| 87 |
5
|
2a1i |
⊢ ( 1o ∈ ω → ( ( 1o ∈ N ∧ 1o <N 1o ) → 𝜓 ) ) |
| 88 |
|
ltpiord |
⊢ ( ( 1o ∈ N ∧ 𝑦 ∈ N ) → ( 1o <N 𝑦 ↔ 1o ∈ 𝑦 ) ) |
| 89 |
38 88
|
mpan |
⊢ ( 𝑦 ∈ N → ( 1o <N 𝑦 ↔ 1o ∈ 𝑦 ) ) |
| 90 |
89
|
pm5.32i |
⊢ ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ↔ ( 𝑦 ∈ N ∧ 1o ∈ 𝑦 ) ) |
| 91 |
90
|
simplbi2 |
⊢ ( 𝑦 ∈ N → ( 1o ∈ 𝑦 → ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) ) ) |
| 92 |
91
|
imim1d |
⊢ ( 𝑦 ∈ N → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( 1o ∈ 𝑦 → 𝜒 ) ) ) |
| 93 |
|
ltrelpi |
⊢ <N ⊆ ( N × N ) |
| 94 |
93
|
brel |
⊢ ( 1o <N suc 𝑦 → ( 1o ∈ N ∧ suc 𝑦 ∈ N ) ) |
| 95 |
|
ltpiord |
⊢ ( ( 1o ∈ N ∧ suc 𝑦 ∈ N ) → ( 1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦 ) ) |
| 96 |
94 95
|
syl |
⊢ ( 1o <N suc 𝑦 → ( 1o <N suc 𝑦 ↔ 1o ∈ suc 𝑦 ) ) |
| 97 |
96
|
ibi |
⊢ ( 1o <N suc 𝑦 → 1o ∈ suc 𝑦 ) |
| 98 |
7
|
eqvinc |
⊢ ( 1o = 𝑦 ↔ ∃ 𝑥 ( 𝑥 = 1o ∧ 𝑥 = 𝑦 ) ) |
| 99 |
98 2 9
|
gencl |
⊢ ( 1o = 𝑦 → 𝜒 ) |
| 100 |
|
jao |
⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( ( 1o = 𝑦 → 𝜒 ) → ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝜒 ) ) ) |
| 101 |
99 100
|
mpi |
⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( ( 1o ∈ 𝑦 ∨ 1o = 𝑦 ) → 𝜒 ) ) |
| 102 |
43 101
|
syl5 |
⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( 1o ∈ suc 𝑦 → 𝜒 ) ) |
| 103 |
97 102
|
syl5 |
⊢ ( ( 1o ∈ 𝑦 → 𝜒 ) → ( 1o <N suc 𝑦 → 𝜒 ) ) |
| 104 |
92 103
|
syl6com |
⊢ ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( 𝑦 ∈ N → ( 1o <N suc 𝑦 → 𝜒 ) ) ) |
| 105 |
104
|
impd |
⊢ ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜒 ) ) |
| 106 |
18
|
sseq1i |
⊢ ( 1o ⊆ 𝑦 ↔ suc ∅ ⊆ 𝑦 ) |
| 107 |
|
0ex |
⊢ ∅ ∈ V |
| 108 |
|
sucssel |
⊢ ( ∅ ∈ V → ( suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦 ) ) |
| 109 |
107 108
|
ax-mp |
⊢ ( suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦 ) |
| 110 |
106 109
|
sylbi |
⊢ ( 1o ⊆ 𝑦 → ∅ ∈ 𝑦 ) |
| 111 |
|
elni2 |
⊢ ( 𝑦 ∈ N ↔ ( 𝑦 ∈ ω ∧ ∅ ∈ 𝑦 ) ) |
| 112 |
111 6
|
sylbir |
⊢ ( ( 𝑦 ∈ ω ∧ ∅ ∈ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
| 113 |
110 112
|
sylan2 |
⊢ ( ( 𝑦 ∈ ω ∧ 1o ⊆ 𝑦 ) → ( 𝜒 → 𝜃 ) ) |
| 114 |
105 113
|
syl9r |
⊢ ( ( 𝑦 ∈ ω ∧ 1o ⊆ 𝑦 ) → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 115 |
114
|
adantlr |
⊢ ( ( ( 𝑦 ∈ ω ∧ 1o ∈ ω ) ∧ 1o ⊆ 𝑦 ) → ( ( ( 𝑦 ∈ N ∧ 1o <N 𝑦 ) → 𝜒 ) → ( ( 𝑦 ∈ N ∧ 1o <N suc 𝑦 ) → 𝜃 ) ) ) |
| 116 |
27 31 82 86 87 115
|
findsg |
⊢ ( ( ( 𝐴 ∈ ω ∧ 1o ∈ ω ) ∧ 1o ⊆ 𝐴 ) → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 117 |
23 116
|
mpanl2 |
⊢ ( ( 𝐴 ∈ ω ∧ 1o ⊆ 𝐴 ) → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 118 |
13 22 117
|
syl2anc |
⊢ ( 𝐴 ∈ N → ( ( 𝐴 ∈ N ∧ 1o <N 𝐴 ) → 𝜏 ) ) |
| 119 |
118
|
expd |
⊢ ( 𝐴 ∈ N → ( 𝐴 ∈ N → ( 1o <N 𝐴 → 𝜏 ) ) ) |
| 120 |
119
|
pm2.43i |
⊢ ( 𝐴 ∈ N → ( 1o <N 𝐴 → 𝜏 ) ) |
| 121 |
|
nlt1pi |
⊢ ¬ 𝐴 <N 1o |
| 122 |
|
ltsopi |
⊢ <N Or N |
| 123 |
|
sotric |
⊢ ( ( <N Or N ∧ ( 𝐴 ∈ N ∧ 1o ∈ N ) ) → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) |
| 124 |
122 123
|
mpan |
⊢ ( ( 𝐴 ∈ N ∧ 1o ∈ N ) → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) |
| 125 |
38 124
|
mpan2 |
⊢ ( 𝐴 ∈ N → ( 𝐴 <N 1o ↔ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) ) |
| 126 |
121 125
|
mtbii |
⊢ ( 𝐴 ∈ N → ¬ ¬ ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) |
| 127 |
126
|
notnotrd |
⊢ ( 𝐴 ∈ N → ( 𝐴 = 1o ∨ 1o <N 𝐴 ) ) |
| 128 |
12 120 127
|
mpjaod |
⊢ ( 𝐴 ∈ N → 𝜏 ) |