| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ind1a | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂  ∧  𝑥  ∈  𝑂 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 2 | 1 | 3expia | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝑥  ∈  𝑂  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1  ↔  𝑥  ∈  𝐴 ) ) ) | 
						
							| 3 | 2 | pm5.32d | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝑥  ∈  𝑂  ∧  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1 )  ↔  ( 𝑥  ∈  𝑂  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 4 |  | indf | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 5 |  | ffn | ⊢ ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 ,  1 }  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  Fn  𝑂 ) | 
						
							| 6 |  | fniniseg | ⊢ ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  Fn  𝑂  →  ( 𝑥  ∈  ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  “  { 1 } )  ↔  ( 𝑥  ∈  𝑂  ∧  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1 ) ) ) | 
						
							| 7 | 4 5 6 | 3syl | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝑥  ∈  ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  “  { 1 } )  ↔  ( 𝑥  ∈  𝑂  ∧  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1 ) ) ) | 
						
							| 8 |  | ssel | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝑂 ) ) | 
						
							| 9 | 8 | pm4.71rd | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝑂  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝑥  ∈  𝐴  ↔  ( 𝑥  ∈  𝑂  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 11 | 3 7 10 | 3bitr4d | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝑥  ∈  ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  “  { 1 } )  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 12 | 11 | eqrdv | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ◡ ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  “  { 1 } )  =  𝐴 ) |