Step |
Hyp |
Ref |
Expression |
1 |
|
indstr.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
indstr.2 |
⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
3 |
|
pm3.24 |
⊢ ¬ ( 𝜑 ∧ ¬ 𝜑 ) |
4 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
5 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
6 |
|
lenlt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
8 |
7
|
imbi2d |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ( ¬ 𝜓 → ¬ 𝑦 < 𝑥 ) ) ) |
9 |
|
con34b |
⊢ ( ( 𝑦 < 𝑥 → 𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝑦 < 𝑥 ) ) |
10 |
8 9
|
bitr4di |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 < 𝑥 → 𝜓 ) ) ) |
11 |
10
|
ralbidva |
⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) ) ) |
12 |
11 2
|
sylbid |
⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) → 𝜑 ) ) |
13 |
12
|
anim2d |
⊢ ( 𝑥 ∈ ℕ → ( ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) → ( ¬ 𝜑 ∧ 𝜑 ) ) ) |
14 |
|
ancom |
⊢ ( ( ¬ 𝜑 ∧ 𝜑 ) ↔ ( 𝜑 ∧ ¬ 𝜑 ) ) |
15 |
13 14
|
syl6ib |
⊢ ( 𝑥 ∈ ℕ → ( ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) → ( 𝜑 ∧ ¬ 𝜑 ) ) ) |
16 |
3 15
|
mtoi |
⊢ ( 𝑥 ∈ ℕ → ¬ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
17 |
16
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℕ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) |
18 |
1
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
19 |
18
|
nnwos |
⊢ ( ∃ 𝑥 ∈ ℕ ¬ 𝜑 → ∃ 𝑥 ∈ ℕ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
20 |
17 19
|
mto |
⊢ ¬ ∃ 𝑥 ∈ ℕ ¬ 𝜑 |
21 |
|
dfral2 |
⊢ ( ∀ 𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃ 𝑥 ∈ ℕ ¬ 𝜑 ) |
22 |
20 21
|
mpbir |
⊢ ∀ 𝑥 ∈ ℕ 𝜑 |
23 |
22
|
rspec |
⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |