Step |
Hyp |
Ref |
Expression |
1 |
|
indstr2.1 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
indstr2.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
indstr2.3 |
⊢ 𝜒 |
4 |
|
indstr2.4 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
5 |
|
elnn1uz2 |
⊢ ( 𝑥 ∈ ℕ ↔ ( 𝑥 = 1 ∨ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) ) |
6 |
|
nnnlt1 |
⊢ ( 𝑦 ∈ ℕ → ¬ 𝑦 < 1 ) |
7 |
6
|
adantl |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ¬ 𝑦 < 1 ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑦 < 𝑥 ↔ 𝑦 < 1 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < 𝑥 ↔ 𝑦 < 1 ) ) |
10 |
7 9
|
mtbird |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ¬ 𝑦 < 𝑥 ) |
11 |
10
|
pm2.21d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 ∈ ℕ ) → ( 𝑦 < 𝑥 → 𝜓 ) ) |
12 |
11
|
ralrimiva |
⊢ ( 𝑥 = 1 → ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) ) |
13 |
|
pm5.5 |
⊢ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜑 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑥 = 1 → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜑 ) ) |
15 |
14 1
|
bitrd |
⊢ ( 𝑥 = 1 → ( ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ↔ 𝜒 ) ) |
16 |
3 15
|
mpbiri |
⊢ ( 𝑥 = 1 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
17 |
16 4
|
jaoi |
⊢ ( ( 𝑥 = 1 ∨ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
18 |
5 17
|
sylbi |
⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) |
19 |
2 18
|
indstr |
⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |