Step |
Hyp |
Ref |
Expression |
1 |
|
indsum.1 |
⊢ ( 𝜑 → 𝑂 ∈ Fin ) |
2 |
|
indsum.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑂 ) |
3 |
|
indsum.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → 𝐵 ∈ ℂ ) |
4 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑂 ) |
5 |
|
pr01ssre |
⊢ { 0 , 1 } ⊆ ℝ |
6 |
|
indf |
⊢ ( ( 𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
8 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) ∈ { 0 , 1 } ) |
9 |
5 8
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) ∈ ℂ ) |
11 |
10 3
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) ∈ ℂ ) |
12 |
4 11
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) ∈ ℂ ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → 𝑂 ∈ Fin ) |
14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → 𝐴 ⊆ 𝑂 ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) |
16 |
|
ind0 |
⊢ ( ( 𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) = 0 ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) = 0 ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = ( 0 · 𝐵 ) ) |
19 |
|
difssd |
⊢ ( 𝜑 → ( 𝑂 ∖ 𝐴 ) ⊆ 𝑂 ) |
20 |
19
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → 𝑥 ∈ 𝑂 ) |
21 |
3
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( 0 · 𝐵 ) = 0 ) |
22 |
20 21
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → ( 0 · 𝐵 ) = 0 ) |
23 |
18 22
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = 0 ) |
24 |
2 12 23 1
|
fsumss |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = Σ 𝑥 ∈ 𝑂 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) ) |
25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑂 ∈ Fin ) |
26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝑂 ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
28 |
|
ind1 |
⊢ ( ( 𝑂 ∈ Fin ∧ 𝐴 ⊆ 𝑂 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) = 1 ) |
29 |
25 26 27 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) = 1 ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = ( 1 · 𝐵 ) ) |
31 |
3
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( 1 · 𝐵 ) = 𝐵 ) |
32 |
4 31
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 1 · 𝐵 ) = 𝐵 ) |
33 |
30 32
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = 𝐵 ) |
34 |
33
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = Σ 𝑥 ∈ 𝐴 𝐵 ) |
35 |
24 34
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑂 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 ) · 𝐵 ) = Σ 𝑥 ∈ 𝐴 𝐵 ) |