| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indsum.1 | ⊢ ( 𝜑  →  𝑂  ∈  Fin ) | 
						
							| 2 |  | indsum.2 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑂 ) | 
						
							| 3 |  | indsum.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 | 2 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑂 ) | 
						
							| 5 |  | pr01ssre | ⊢ { 0 ,  1 }  ⊆  ℝ | 
						
							| 6 |  | indf | ⊢ ( ( 𝑂  ∈  Fin  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 8 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ∈  { 0 ,  1 } ) | 
						
							| 9 | 5 8 | sselid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 11 | 10 3 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 12 | 4 11 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  𝑂  ∈  Fin ) | 
						
							| 14 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  𝐴  ⊆  𝑂 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ) | 
						
							| 16 |  | ind0 | ⊢ ( ( 𝑂  ∈  Fin  ∧  𝐴  ⊆  𝑂  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  0 ) | 
						
							| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  0 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  ( 0  ·  𝐵 ) ) | 
						
							| 19 |  | difssd | ⊢ ( 𝜑  →  ( 𝑂  ∖  𝐴 )  ⊆  𝑂 ) | 
						
							| 20 | 19 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  𝑥  ∈  𝑂 ) | 
						
							| 21 | 3 | mul02d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 22 | 20 21 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 23 | 18 22 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑂  ∖  𝐴 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  0 ) | 
						
							| 24 | 2 12 23 1 | fsumss | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  Σ 𝑥  ∈  𝑂 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 ) ) | 
						
							| 25 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑂  ∈  Fin ) | 
						
							| 26 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  𝑂 ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 28 |  | ind1 | ⊢ ( ( 𝑂  ∈  Fin  ∧  𝐴  ⊆  𝑂  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1 ) | 
						
							| 29 | 25 26 27 28 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  =  1 ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  ( 1  ·  𝐵 ) ) | 
						
							| 31 | 3 | mullidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑂 )  →  ( 1  ·  𝐵 )  =  𝐵 ) | 
						
							| 32 | 4 31 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 1  ·  𝐵 )  =  𝐵 ) | 
						
							| 33 | 30 32 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  𝐵 ) | 
						
							| 34 | 33 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  Σ 𝑥  ∈  𝐴 𝐵 ) | 
						
							| 35 | 24 34 | eqtr3d | ⊢ ( 𝜑  →  Σ 𝑥  ∈  𝑂 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ‘ 𝑥 )  ·  𝐵 )  =  Σ 𝑥  ∈  𝐴 𝐵 ) |