| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indsumin.1 | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 2 |  | indsumin.2 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | indsumin.3 | ⊢ ( 𝜑  →  𝐴  ⊆  𝑂 ) | 
						
							| 4 |  | indsumin.4 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑂 ) | 
						
							| 5 |  | indsumin.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 6 |  | inindif | ⊢ ( ( 𝐴  ∩  𝐵 )  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  ( ( 𝐴  ∩  𝐵 )  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ ) | 
						
							| 8 |  | inundif | ⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 | 
						
							| 9 | 8 | eqcomi | ⊢ 𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 11 |  | pr01ssre | ⊢ { 0 ,  1 }  ⊆  ℝ | 
						
							| 12 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 13 | 11 12 | sstri | ⊢ { 0 ,  1 }  ⊆  ℂ | 
						
							| 14 |  | indf | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐵  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 15 | 1 4 14 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 ,  1 } ) | 
						
							| 17 | 3 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑘  ∈  𝑂 ) | 
						
							| 18 | 16 17 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  { 0 ,  1 } ) | 
						
							| 19 | 13 18 | sselid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 20 | 19 5 | mulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  ∈  ℂ ) | 
						
							| 21 | 7 10 2 20 | fsumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  ( Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  +  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 ) ) ) | 
						
							| 22 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝑂  ∈  𝑉 ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝐵  ⊆  𝑂 ) | 
						
							| 24 |  | inss2 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐵 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  𝐵 ) | 
						
							| 26 | 25 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 27 |  | ind1 | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐵  ⊆  𝑂  ∧  𝑘  ∈  𝐵 )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  =  1 ) | 
						
							| 28 | 22 23 26 27 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  =  1 ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  ( 1  ·  𝐶 ) ) | 
						
							| 30 |  | inss1 | ⊢ ( 𝐴  ∩  𝐵 )  ⊆  𝐴 | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ⊆  𝐴 ) | 
						
							| 32 | 31 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 33 | 32 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 34 | 33 | mullidd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( 1  ·  𝐶 )  =  𝐶 ) | 
						
							| 35 | 29 34 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  𝐶 ) | 
						
							| 36 | 35 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶 ) | 
						
							| 37 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝑂  ∈  𝑉 ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝐵  ⊆  𝑂 ) | 
						
							| 39 | 3 | ssdifd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ⊆  ( 𝑂  ∖  𝐵 ) ) | 
						
							| 40 | 39 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝑘  ∈  ( 𝑂  ∖  𝐵 ) ) | 
						
							| 41 |  | ind0 | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐵  ⊆  𝑂  ∧  𝑘  ∈  ( 𝑂  ∖  𝐵 ) )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  =  0 ) | 
						
							| 42 | 37 38 40 41 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  =  0 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  ( 0  ·  𝐶 ) ) | 
						
							| 44 |  | difssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ⊆  𝐴 ) | 
						
							| 45 | 44 | sselda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝑘  ∈  𝐴 ) | 
						
							| 46 | 45 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 47 | 46 | mul02d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  ( 0  ·  𝐶 )  =  0 ) | 
						
							| 48 | 43 47 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐵 ) )  →  ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  0 ) | 
						
							| 49 | 48 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) 0 ) | 
						
							| 50 |  | diffi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∖  𝐵 )  ∈  Fin ) | 
						
							| 51 | 2 50 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ∈  Fin ) | 
						
							| 52 |  | sumz | ⊢ ( ( ( 𝐴  ∖  𝐵 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 𝐴  ∖  𝐵 )  ∈  Fin )  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) 0  =  0 ) | 
						
							| 53 | 52 | olcs | ⊢ ( ( 𝐴  ∖  𝐵 )  ∈  Fin  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) 0  =  0 ) | 
						
							| 54 | 51 53 | syl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) 0  =  0 ) | 
						
							| 55 | 49 54 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  0 ) | 
						
							| 56 | 36 55 | oveq12d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  +  Σ 𝑘  ∈  ( 𝐴  ∖  𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 ) )  =  ( Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶  +  0 ) ) | 
						
							| 57 |  | infi | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  ∩  𝐵 )  ∈  Fin ) | 
						
							| 58 | 2 57 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  ∈  Fin ) | 
						
							| 59 | 58 33 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶  ∈  ℂ ) | 
						
							| 60 | 59 | addridd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶  +  0 )  =  Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶 ) | 
						
							| 61 | 21 56 60 | 3eqtrd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 )  ·  𝐶 )  =  Σ 𝑘  ∈  ( 𝐴  ∩  𝐵 ) 𝐶 ) |