Step |
Hyp |
Ref |
Expression |
1 |
|
indsumin.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
2 |
|
indsumin.2 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
indsumin.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑂 ) |
4 |
|
indsumin.4 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝑂 ) |
5 |
|
indsumin.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
6 |
|
inindif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
8 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
9 |
8
|
eqcomi |
⊢ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
11 |
|
pr01ssre |
⊢ { 0 , 1 } ⊆ ℝ |
12 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
13 |
11 12
|
sstri |
⊢ { 0 , 1 } ⊆ ℂ |
14 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
15 |
1 4 14
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) : 𝑂 ⟶ { 0 , 1 } ) |
17 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑂 ) |
18 |
16 17
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ { 0 , 1 } ) |
19 |
13 18
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℂ ) |
20 |
19 5
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) ∈ ℂ ) |
21 |
7 10 2 20
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = ( Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) ) ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑂 ∈ 𝑉 ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝐵 ⊆ 𝑂 ) |
24 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) |
26 |
25
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑘 ∈ 𝐵 ) |
27 |
|
ind1 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ 𝑘 ∈ 𝐵 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) = 1 ) |
28 |
22 23 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) = 1 ) |
29 |
28
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = ( 1 · 𝐶 ) ) |
30 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
32 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝑘 ∈ 𝐴 ) |
33 |
32 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
34 |
33
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( 1 · 𝐶 ) = 𝐶 ) |
35 |
29 34
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = 𝐶 ) |
36 |
35
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 ) |
37 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑂 ∈ 𝑉 ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝐵 ⊆ 𝑂 ) |
39 |
3
|
ssdifd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ ( 𝑂 ∖ 𝐵 ) ) |
40 |
39
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑘 ∈ ( 𝑂 ∖ 𝐵 ) ) |
41 |
|
ind0 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ 𝑘 ∈ ( 𝑂 ∖ 𝐵 ) ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) = 0 ) |
42 |
37 38 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) = 0 ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = ( 0 · 𝐶 ) ) |
44 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
45 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝑘 ∈ 𝐴 ) |
46 |
45 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
47 |
46
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 0 · 𝐶 ) = 0 ) |
48 |
43 47
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = 0 ) |
49 |
48
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 0 ) |
50 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ 𝐵 ) ∈ Fin ) |
51 |
2 50
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ Fin ) |
52 |
|
sumz |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 𝐴 ∖ 𝐵 ) ∈ Fin ) → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 0 = 0 ) |
53 |
52
|
olcs |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ Fin → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 0 = 0 ) |
54 |
51 53
|
syl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) 0 = 0 ) |
55 |
49 54
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = 0 ) |
56 |
36 55
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) + Σ 𝑘 ∈ ( 𝐴 ∖ 𝐵 ) ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) ) = ( Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 + 0 ) ) |
57 |
|
infi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
58 |
2 57
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ Fin ) |
59 |
58 33
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 ∈ ℂ ) |
60 |
59
|
addid1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 + 0 ) = Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 ) |
61 |
21 56 60
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐵 ) ‘ 𝑘 ) · 𝐶 ) = Σ 𝑘 ∈ ( 𝐴 ∩ 𝐵 ) 𝐶 ) |