Step |
Hyp |
Ref |
Expression |
1 |
|
indthinc.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
2 |
|
indthinc.h |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐵 ) × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
3 |
|
indthinc.o |
⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) |
4 |
|
indthinc.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
5 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐵 × 𝐵 ) × { 1o } ) = ( ( 𝐵 × 𝐵 ) × { 1o } ) ) |
6 |
5
|
f1omo |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
7 |
|
df-ov |
⊢ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) |
8 |
7
|
eleq2i |
⊢ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
9 |
8
|
mobii |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( ( ( 𝐵 × 𝐵 ) × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
10 |
6 9
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
11 |
|
biid |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ) |
12 |
|
id |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐵 ) |
13 |
12
|
ancli |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
14 |
|
1oex |
⊢ 1o ∈ V |
15 |
14
|
ovconst2 |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o ) |
16 |
|
0lt1o |
⊢ ∅ ∈ 1o |
17 |
|
eleq2 |
⊢ ( ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o → ( ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ↔ ∅ ∈ 1o ) ) |
18 |
16 17
|
mpbiri |
⊢ ( ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) = 1o → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
19 |
13 15 18
|
3syl |
⊢ ( 𝑦 ∈ 𝐵 → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ) |
21 |
16
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ∅ ∈ 1o ) |
22 |
|
0ov |
⊢ ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) = ∅ |
23 |
22
|
oveqi |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ( 𝑔 ∅ 𝑓 ) |
24 |
|
0ov |
⊢ ( 𝑔 ∅ 𝑓 ) = ∅ |
25 |
23 24
|
eqtri |
⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ |
26 |
25
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ ) |
27 |
14
|
ovconst2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) = 1o ) |
28 |
27
|
3adant2 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) = 1o ) |
29 |
21 26 28
|
3eltr4d |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) |
30 |
29
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ( 𝐵 × 𝐵 ) × { 1o } ) 𝑧 ) ) |
31 |
1 2 10 3 4 11 20 30
|
isthincd2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |