| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ind | ⊢ 𝟭  =  ( 𝑜  ∈  V  ↦  ( 𝑎  ∈  𝒫  𝑜  ↦  ( 𝑥  ∈  𝑜  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) ) | 
						
							| 2 |  | pweq | ⊢ ( 𝑜  =  𝑂  →  𝒫  𝑜  =  𝒫  𝑂 ) | 
						
							| 3 |  | mpteq1 | ⊢ ( 𝑜  =  𝑂  →  ( 𝑥  ∈  𝑜  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) )  =  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) | 
						
							| 4 | 2 3 | mpteq12dv | ⊢ ( 𝑜  =  𝑂  →  ( 𝑎  ∈  𝒫  𝑜  ↦  ( 𝑥  ∈  𝑜  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) )  =  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) ) | 
						
							| 5 |  | elex | ⊢ ( 𝑂  ∈  𝑉  →  𝑂  ∈  V ) | 
						
							| 6 |  | pwexg | ⊢ ( 𝑂  ∈  V  →  𝒫  𝑂  ∈  V ) | 
						
							| 7 |  | mptexg | ⊢ ( 𝒫  𝑂  ∈  V  →  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) )  ∈  V ) | 
						
							| 8 | 5 6 7 | 3syl | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) )  ∈  V ) | 
						
							| 9 | 1 4 5 8 | fvmptd3 | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝟭 ‘ 𝑂 )  =  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) ) |