| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indv | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝟭 ‘ 𝑂 )  =  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝟭 ‘ 𝑂 )  =  ( 𝑎  ∈  𝒫  𝑂  ↦  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) ) ) ) | 
						
							| 3 |  | eleq2 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑥  ∈  𝑎  ↔  𝑥  ∈  𝐴 ) ) | 
						
							| 4 | 3 | ifbid | ⊢ ( 𝑎  =  𝐴  →  if ( 𝑥  ∈  𝑎 ,  1 ,  0 )  =  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) | 
						
							| 5 | 4 | mpteq2dv | ⊢ ( 𝑎  =  𝐴  →  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) )  =  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  ∧  𝑎  =  𝐴 )  →  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝑎 ,  1 ,  0 ) )  =  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) ) | 
						
							| 7 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝑂  ∧  𝑂  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 8 | 7 | ancoms | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  𝐴  ∈  V ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  𝐴  ⊆  𝑂 ) | 
						
							| 10 | 8 9 | elpwd | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  𝐴  ∈  𝒫  𝑂 ) | 
						
							| 11 |  | mptexg | ⊢ ( 𝑂  ∈  𝑉  →  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) )  ∈  V ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) )  ∈  V ) | 
						
							| 13 | 2 6 10 12 | fvmptd | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  =  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) ) |