| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfmpt3 | ⊢ ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) )  =  ∪  𝑥  ∈  𝑂 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) | 
						
							| 2 |  | indval | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  =  ( 𝑥  ∈  𝑂  ↦  if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) ) ) | 
						
							| 3 |  | undif | ⊢ ( 𝐴  ⊆  𝑂  ↔  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) )  =  𝑂 ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝐴  ⊆  𝑂  →  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) )  =  𝑂 ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) )  =  𝑂 ) | 
						
							| 6 | 5 | iuneq1d | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ∪  𝑥  ∈  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ∪  𝑥  ∈  𝑂 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) ) | 
						
							| 7 | 1 2 6 | 3eqtr4a | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  =  ∪  𝑥  ∈  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) ) | 
						
							| 8 |  | iunxun | ⊢ ∪  𝑥  ∈  ( 𝐴  ∪  ( 𝑂  ∖  𝐴 ) ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  ∪  ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) ) | 
						
							| 9 | 7 8 | eqtrdi | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  =  ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  ∪  ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) ) ) | 
						
							| 10 |  | iftrue | ⊢ ( 𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  1 ,  0 )  =  1 ) | 
						
							| 11 | 10 | sneqd | ⊢ ( 𝑥  ∈  𝐴  →  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) }  =  { 1 } ) | 
						
							| 12 | 11 | xpeq2d | ⊢ ( 𝑥  ∈  𝐴  →  ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ( { 𝑥 }  ×  { 1 } ) ) | 
						
							| 13 | 12 | iuneq2i | ⊢ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { 1 } ) | 
						
							| 14 |  | iunxpconst | ⊢ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { 1 } )  =  ( 𝐴  ×  { 1 } ) | 
						
							| 15 | 13 14 | eqtri | ⊢ ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ( 𝐴  ×  { 1 } ) | 
						
							| 16 |  | eldifn | ⊢ ( 𝑥  ∈  ( 𝑂  ∖  𝐴 )  →  ¬  𝑥  ∈  𝐴 ) | 
						
							| 17 |  | iffalse | ⊢ ( ¬  𝑥  ∈  𝐴  →  if ( 𝑥  ∈  𝐴 ,  1 ,  0 )  =  0 ) | 
						
							| 18 | 17 | sneqd | ⊢ ( ¬  𝑥  ∈  𝐴  →  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) }  =  { 0 } ) | 
						
							| 19 | 16 18 | syl | ⊢ ( 𝑥  ∈  ( 𝑂  ∖  𝐴 )  →  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) }  =  { 0 } ) | 
						
							| 20 | 19 | xpeq2d | ⊢ ( 𝑥  ∈  ( 𝑂  ∖  𝐴 )  →  ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ( { 𝑥 }  ×  { 0 } ) ) | 
						
							| 21 | 20 | iuneq2i | ⊢ ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { 0 } ) | 
						
							| 22 |  | iunxpconst | ⊢ ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { 0 } )  =  ( ( 𝑂  ∖  𝐴 )  ×  { 0 } ) | 
						
							| 23 | 21 22 | eqtri | ⊢ ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  =  ( ( 𝑂  ∖  𝐴 )  ×  { 0 } ) | 
						
							| 24 | 15 23 | uneq12i | ⊢ ( ∪  𝑥  ∈  𝐴 ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } )  ∪  ∪  𝑥  ∈  ( 𝑂  ∖  𝐴 ) ( { 𝑥 }  ×  { if ( 𝑥  ∈  𝐴 ,  1 ,  0 ) } ) )  =  ( ( 𝐴  ×  { 1 } )  ∪  ( ( 𝑂  ∖  𝐴 )  ×  { 0 } ) ) | 
						
							| 25 | 9 24 | eqtrdi | ⊢ ( ( 𝑂  ∈  𝑉  ∧  𝐴  ⊆  𝑂 )  →  ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 )  =  ( ( 𝐴  ×  { 1 } )  ∪  ( ( 𝑂  ∖  𝐴 )  ×  { 0 } ) ) ) |