Metamath Proof Explorer


Theorem inelcm

Description: The intersection of classes with a common member is nonempty. (Contributed by NM, 7-Apr-1994)

Ref Expression
Assertion inelcm ( ( 𝐴𝐵𝐴𝐶 ) → ( 𝐵𝐶 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 elin ( 𝐴 ∈ ( 𝐵𝐶 ) ↔ ( 𝐴𝐵𝐴𝐶 ) )
2 ne0i ( 𝐴 ∈ ( 𝐵𝐶 ) → ( 𝐵𝐶 ) ≠ ∅ )
3 1 2 sylbir ( ( 𝐴𝐵𝐴𝐶 ) → ( 𝐵𝐶 ) ≠ ∅ )