Step |
Hyp |
Ref |
Expression |
1 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 ) |
3 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
4 |
3
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ Fin ) |
5 |
2 4
|
elind |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
6 |
|
intprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
7 |
6
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) = ∩ { 𝐴 , 𝐵 } ) |
9 |
|
inteq |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ∩ 𝑝 = ∩ { 𝐴 , 𝐵 } ) |
10 |
9
|
rspceeqv |
⊢ ( ( { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∩ { 𝐴 , 𝐵 } ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) |
11 |
5 8 10
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) |
12 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
14 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) |
15 |
|
elfi |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) ) |
17 |
11 16
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ) |