| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prelpwi | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑋 ) | 
						
							| 2 | 1 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  𝑋 ) | 
						
							| 3 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝐴 ,  𝐵 }  ∈  Fin ) | 
						
							| 5 | 2 4 | elind | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝐴 ,  𝐵 }  ∈  ( 𝒫  𝑋  ∩  Fin ) ) | 
						
							| 6 |  | intprg | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∩  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∩  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∩  𝐵 )  =  ∩  { 𝐴 ,  𝐵 } ) | 
						
							| 9 |  | inteq | ⊢ ( 𝑝  =  { 𝐴 ,  𝐵 }  →  ∩  𝑝  =  ∩  { 𝐴 ,  𝐵 } ) | 
						
							| 10 | 9 | rspceeqv | ⊢ ( ( { 𝐴 ,  𝐵 }  ∈  ( 𝒫  𝑋  ∩  Fin )  ∧  ( 𝐴  ∩  𝐵 )  =  ∩  { 𝐴 ,  𝐵 } )  →  ∃ 𝑝  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐴  ∩  𝐵 )  =  ∩  𝑝 ) | 
						
							| 11 | 5 8 10 | syl2anc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∃ 𝑝  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐴  ∩  𝐵 )  =  ∩  𝑝 ) | 
						
							| 12 |  | inex1g | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∩  𝐵 )  ∈  V ) | 
						
							| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∩  𝐵 )  ∈  V ) | 
						
							| 14 |  | simp1 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  𝑋  ∈  𝑉 ) | 
						
							| 15 |  | elfi | ⊢ ( ( ( 𝐴  ∩  𝐵 )  ∈  V  ∧  𝑋  ∈  𝑉 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  ( fi ‘ 𝑋 )  ↔  ∃ 𝑝  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐴  ∩  𝐵 )  =  ∩  𝑝 ) ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  ( fi ‘ 𝑋 )  ↔  ∃ 𝑝  ∈  ( 𝒫  𝑋  ∩  Fin ) ( 𝐴  ∩  𝐵 )  =  ∩  𝑝 ) ) | 
						
							| 17 | 11 16 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴  ∩  𝐵 )  ∈  ( fi ‘ 𝑋 ) ) |