Metamath Proof Explorer


Theorem inelr

Description: The imaginary unit _i is not a real number. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion inelr ¬ i ∈ ℝ

Proof

Step Hyp Ref Expression
1 neg1lt0 - 1 < 0
2 neg1rr - 1 ∈ ℝ
3 0re 0 ∈ ℝ
4 2 3 ltnsymi ( - 1 < 0 → ¬ 0 < - 1 )
5 1 4 ax-mp ¬ 0 < - 1
6 ixi ( i · i ) = - 1
7 6 breq2i ( 0 < ( i · i ) ↔ 0 < - 1 )
8 5 7 mtbir ¬ 0 < ( i · i )
9 ine0 i ≠ 0
10 msqgt0 ( ( i ∈ ℝ ∧ i ≠ 0 ) → 0 < ( i · i ) )
11 9 10 mpan2 ( i ∈ ℝ → 0 < ( i · i ) )
12 8 11 mto ¬ i ∈ ℝ