Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ineqri.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) | |
Assertion | ineqri | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineqri.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) | |
2 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
3 | 2 1 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) |
4 | 3 | eqriv | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |