Description: Inference from membership to intersection. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ineqri.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) | |
| Assertion | ineqri | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineqri.1 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) | |
| 2 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 1 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ∈ 𝐶 ) |
| 4 | 3 | eqriv | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 |