Metamath Proof Explorer


Theorem inex1

Description: Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of TakeutiZaring p. 22. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis inex1.1 𝐴 ∈ V
Assertion inex1 ( 𝐴𝐵 ) ∈ V

Proof

Step Hyp Ref Expression
1 inex1.1 𝐴 ∈ V
2 1 zfauscl 𝑥𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦𝐵 ) )
3 dfcleq ( 𝑥 = ( 𝐴𝐵 ) ↔ ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ ( 𝐴𝐵 ) ) )
4 elin ( 𝑦 ∈ ( 𝐴𝐵 ) ↔ ( 𝑦𝐴𝑦𝐵 ) )
5 4 bibi2i ( ( 𝑦𝑥𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
6 5 albii ( ∀ 𝑦 ( 𝑦𝑥𝑦 ∈ ( 𝐴𝐵 ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
7 3 6 bitri ( 𝑥 = ( 𝐴𝐵 ) ↔ ∀ 𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
8 7 exbii ( ∃ 𝑥 𝑥 = ( 𝐴𝐵 ) ↔ ∃ 𝑥𝑦 ( 𝑦𝑥 ↔ ( 𝑦𝐴𝑦𝐵 ) ) )
9 2 8 mpbir 𝑥 𝑥 = ( 𝐴𝐵 )
10 9 issetri ( 𝐴𝐵 ) ∈ V