| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inex1.1 |
⊢ 𝐴 ∈ V |
| 2 |
1
|
zfauscl |
⊢ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 3 |
|
dfcleq |
⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ) |
| 4 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 5 |
4
|
bibi2i |
⊢ ( ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( 𝐴 ∩ 𝐵 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 7 |
3 6
|
bitri |
⊢ ( 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 8 |
7
|
exbii |
⊢ ( ∃ 𝑥 𝑥 = ( 𝐴 ∩ 𝐵 ) ↔ ∃ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 9 |
2 8
|
mpbir |
⊢ ∃ 𝑥 𝑥 = ( 𝐴 ∩ 𝐵 ) |
| 10 |
9
|
issetri |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ V |