Metamath Proof Explorer
Description: Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995)
|
|
Ref |
Expression |
|
Assertion |
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ineq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∩ 𝐵 ) ∈ V ↔ ( 𝐴 ∩ 𝐵 ) ∈ V ) ) |
3 |
|
vex |
⊢ 𝑥 ∈ V |
4 |
3
|
inex1 |
⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
5 |
2 4
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |