Step |
Hyp |
Ref |
Expression |
1 |
|
fr0g |
⊢ ( 𝑥 ∈ V → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) = 𝑥 ) |
2 |
1
|
elv |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) = 𝑥 |
3 |
|
frfnom |
⊢ ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω |
4 |
|
peano1 |
⊢ ∅ ∈ ω |
5 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ ∅ ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
7 |
2 6
|
eqeltrri |
⊢ 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
8 |
|
fvelrnb |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 ) ) |
9 |
3 8
|
ax-mp |
⊢ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 ) |
10 |
|
fvex |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V |
11 |
10
|
sucid |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) |
12 |
10
|
sucex |
⊢ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V |
13 |
|
eqid |
⊢ ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
14 |
|
suceq |
⊢ ( 𝑧 = 𝑣 → suc 𝑧 = suc 𝑣 ) |
15 |
|
suceq |
⊢ ( 𝑧 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) → suc 𝑧 = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) |
16 |
13 14 15
|
frsucmpt2 |
⊢ ( ( 𝑓 ∈ ω ∧ suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ V ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) |
17 |
12 16
|
mpan2 |
⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) = suc ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ) |
18 |
11 17
|
eleqtrrid |
⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) |
19 |
|
eleq1 |
⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ↔ 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) |
20 |
18 19
|
syl5ib |
⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( 𝑓 ∈ ω → 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) |
21 |
|
peano2b |
⊢ ( 𝑓 ∈ ω ↔ suc 𝑓 ∈ ω ) |
22 |
|
fnfvelrn |
⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω ∧ suc 𝑓 ∈ ω ) → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
23 |
3 22
|
mpan |
⊢ ( suc 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
24 |
21 23
|
sylbi |
⊢ ( 𝑓 ∈ ω → ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
25 |
20 24
|
jca2 |
⊢ ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ( 𝑓 ∈ ω → ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
26 |
|
fvex |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ V |
27 |
|
eleq2 |
⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ) ) |
28 |
|
eleq1 |
⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ↔ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
29 |
27 28
|
anbi12d |
⊢ ( 𝑤 = ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ↔ ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
30 |
26 29
|
spcev |
⊢ ( ( 𝑧 ∈ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∧ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ suc 𝑓 ) ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
31 |
25 30
|
syl6com |
⊢ ( 𝑓 ∈ ω → ( ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
32 |
31
|
rexlimiv |
⊢ ( ∃ 𝑓 ∈ ω ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ‘ 𝑓 ) = 𝑧 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
33 |
9 32
|
sylbi |
⊢ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
34 |
33
|
ax-gen |
⊢ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
35 |
|
fndm |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ω ) |
36 |
3 35
|
ax-mp |
⊢ dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) = ω |
37 |
|
id |
⊢ ( ω ∈ 𝑉 → ω ∈ 𝑉 ) |
38 |
36 37
|
eqeltrid |
⊢ ( ω ∈ 𝑉 → dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ 𝑉 ) |
39 |
|
fnfun |
⊢ ( ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) Fn ω → Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) |
40 |
3 39
|
ax-mp |
⊢ Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) |
41 |
|
funrnex |
⊢ ( dom ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ 𝑉 → ( Fun ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V ) ) |
42 |
38 40 41
|
mpisyl |
⊢ ( ω ∈ 𝑉 → ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V ) |
43 |
|
eleq2 |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
44 |
|
eleq2 |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
45 |
|
eleq2 |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
47 |
46
|
exbidv |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) |
48 |
44 47
|
imbi12d |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) |
49 |
48
|
albidv |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) |
50 |
43 49
|
anbi12d |
⊢ ( 𝑦 = ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ↔ ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) ) ) |
51 |
50
|
spcegv |
⊢ ( ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∈ V → ( ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) ) |
52 |
42 51
|
syl |
⊢ ( ω ∈ 𝑉 → ( ( 𝑥 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ∧ ∀ 𝑧 ( 𝑧 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ ran ( rec ( ( 𝑣 ∈ V ↦ suc 𝑣 ) , 𝑥 ) ↾ ω ) ) ) ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) ) |
53 |
7 34 52
|
mp2ani |
⊢ ( ω ∈ 𝑉 → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ∃ 𝑤 ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦 ) ) ) ) |