Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Regularity
Axiom of Infinity equivalents
inf1
Metamath Proof Explorer
Description: Variation of Axiom of Infinity (using zfinf as a hypothesis). Axiom
of Infinity in FreydScedrov p. 283. (Contributed by NM , 14-Oct-1996)
(Revised by David Abernethy , 1-Oct-2013)
Ref
Expression
Hypothesis
inf1.1
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) )
Assertion
inf1
⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) )
Proof
Step
Hyp
Ref
Expression
1
inf1.1
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) )
2
ne0i
⊢ ( 𝑦 ∈ 𝑥 → 𝑥 ≠ ∅ )
3
2
anim1i
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) → ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) )
4
1 3
eximii
⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) )