Step |
Hyp |
Ref |
Expression |
1 |
|
inf1.1 |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
2 |
1
|
inf1 |
⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
3 |
|
dfss2 |
⊢ ( 𝑥 ⊆ ∪ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ) |
4 |
|
eluni |
⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
5 |
4
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
7 |
3 6
|
bitri |
⊢ ( 𝑥 ⊆ ∪ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ↔ ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
10 |
2 9
|
mpbir |
⊢ ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) |