Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
2 |
|
inf3lem.2 |
⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) |
3 |
|
inf3lem.3 |
⊢ 𝐴 ∈ V |
4 |
|
inf3lem.4 |
⊢ 𝐵 ∈ V |
5 |
|
fveq2 |
⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ∅ ) ) |
6 |
|
suceq |
⊢ ( 𝑣 = ∅ → suc 𝑣 = suc ∅ ) |
7 |
6
|
fveq2d |
⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc ∅ ) ) |
8 |
5 7
|
sseq12d |
⊢ ( 𝑣 = ∅ → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ ∅ ) ⊆ ( 𝐹 ‘ suc ∅ ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
10 |
|
suceq |
⊢ ( 𝑣 = 𝑢 → suc 𝑣 = suc 𝑢 ) |
11 |
10
|
fveq2d |
⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) |
12 |
9 11
|
sseq12d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) |
14 |
|
suceq |
⊢ ( 𝑣 = suc 𝑢 → suc 𝑣 = suc suc 𝑢 ) |
15 |
14
|
fveq2d |
⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc suc 𝑢 ) ) |
16 |
13 15
|
sseq12d |
⊢ ( 𝑣 = suc 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
17 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) |
18 |
|
suceq |
⊢ ( 𝑣 = 𝐴 → suc 𝑣 = suc 𝐴 ) |
19 |
18
|
fveq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ suc 𝑣 ) = ( 𝐹 ‘ suc 𝐴 ) ) |
20 |
17 19
|
sseq12d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ suc 𝑣 ) ↔ ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) ) |
21 |
1 2 3 3
|
inf3lemb |
⊢ ( 𝐹 ‘ ∅ ) = ∅ |
22 |
|
0ss |
⊢ ∅ ⊆ ( 𝐹 ‘ suc ∅ ) |
23 |
21 22
|
eqsstri |
⊢ ( 𝐹 ‘ ∅ ) ⊆ ( 𝐹 ‘ suc ∅ ) |
24 |
|
sstr2 |
⊢ ( ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
25 |
24
|
com12 |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) → ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
26 |
25
|
anim2d |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
27 |
|
vex |
⊢ 𝑢 ∈ V |
28 |
1 2 27 3
|
inf3lemc |
⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
29 |
28
|
eleq2d |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
30 |
|
vex |
⊢ 𝑣 ∈ V |
31 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑢 ) ∈ V |
32 |
1 2 30 31
|
inf3lema |
⊢ ( 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) |
33 |
29 32
|
bitrdi |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) ) |
34 |
|
peano2b |
⊢ ( 𝑢 ∈ ω ↔ suc 𝑢 ∈ ω ) |
35 |
27
|
sucex |
⊢ suc 𝑢 ∈ V |
36 |
1 2 35 3
|
inf3lemc |
⊢ ( suc 𝑢 ∈ ω → ( 𝐹 ‘ suc suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) |
37 |
34 36
|
sylbi |
⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) |
38 |
37
|
eleq2d |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ↔ 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
39 |
|
fvex |
⊢ ( 𝐹 ‘ suc 𝑢 ) ∈ V |
40 |
1 2 30 39
|
inf3lema |
⊢ ( 𝑣 ∈ ( 𝐺 ‘ ( 𝐹 ‘ suc 𝑢 ) ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) |
41 |
38 40
|
bitrdi |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ↔ ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) |
42 |
33 41
|
imbi12d |
⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ 𝑥 ∧ ( 𝑣 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) ) ) ) |
43 |
26 42
|
syl5ibr |
⊢ ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ) ) |
44 |
43
|
imp |
⊢ ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) → ( 𝑣 ∈ ( 𝐹 ‘ suc 𝑢 ) → 𝑣 ∈ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
45 |
44
|
ssrdv |
⊢ ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) |
46 |
45
|
ex |
⊢ ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ suc 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ⊆ ( 𝐹 ‘ suc suc 𝑢 ) ) ) |
47 |
8 12 16 20 23 46
|
finds |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ suc 𝐴 ) ) |