| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑣  =  ∅  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 6 |  | suceq | ⊢ ( 𝑣  =  ∅  →  suc  𝑣  =  suc  ∅ ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( 𝑣  =  ∅  →  ( 𝐹 ‘ suc  𝑣 )  =  ( 𝐹 ‘ suc  ∅ ) ) | 
						
							| 8 | 5 7 | sseq12d | ⊢ ( 𝑣  =  ∅  →  ( ( 𝐹 ‘ 𝑣 )  ⊆  ( 𝐹 ‘ suc  𝑣 )  ↔  ( 𝐹 ‘ ∅ )  ⊆  ( 𝐹 ‘ suc  ∅ ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑣  =  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 10 |  | suceq | ⊢ ( 𝑣  =  𝑢  →  suc  𝑣  =  suc  𝑢 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑣  =  𝑢  →  ( 𝐹 ‘ suc  𝑣 )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 12 | 9 11 | sseq12d | ⊢ ( 𝑣  =  𝑢  →  ( ( 𝐹 ‘ 𝑣 )  ⊆  ( 𝐹 ‘ suc  𝑣 )  ↔  ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑣  =  suc  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 14 |  | suceq | ⊢ ( 𝑣  =  suc  𝑢  →  suc  𝑣  =  suc  suc  𝑢 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑣  =  suc  𝑢  →  ( 𝐹 ‘ suc  𝑣 )  =  ( 𝐹 ‘ suc  suc  𝑢 ) ) | 
						
							| 16 | 13 15 | sseq12d | ⊢ ( 𝑣  =  suc  𝑢  →  ( ( 𝐹 ‘ 𝑣 )  ⊆  ( 𝐹 ‘ suc  𝑣 )  ↔  ( 𝐹 ‘ suc  𝑢 )  ⊆  ( 𝐹 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 18 |  | suceq | ⊢ ( 𝑣  =  𝐴  →  suc  𝑣  =  suc  𝐴 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑣  =  𝐴  →  ( 𝐹 ‘ suc  𝑣 )  =  ( 𝐹 ‘ suc  𝐴 ) ) | 
						
							| 20 | 17 19 | sseq12d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝐹 ‘ 𝑣 )  ⊆  ( 𝐹 ‘ suc  𝑣 )  ↔  ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 21 | 1 2 3 3 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ )  =  ∅ | 
						
							| 22 |  | 0ss | ⊢ ∅  ⊆  ( 𝐹 ‘ suc  ∅ ) | 
						
							| 23 | 21 22 | eqsstri | ⊢ ( 𝐹 ‘ ∅ )  ⊆  ( 𝐹 ‘ suc  ∅ ) | 
						
							| 24 |  | sstr2 | ⊢ ( ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 )  →  ( ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 )  →  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 )  →  ( ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 )  →  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 26 | 25 | anim2d | ⊢ ( ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 )  →  ( ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) )  →  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 27 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 28 | 1 2 27 3 | inf3lemc | ⊢ ( 𝑢  ∈  ω  →  ( 𝐹 ‘ suc  𝑢 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 29 | 28 | eleq2d | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝑢 )  ↔  𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 30 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 31 |  | fvex | ⊢ ( 𝐹 ‘ 𝑢 )  ∈  V | 
						
							| 32 | 1 2 30 31 | inf3lema | ⊢ ( 𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 33 | 29 32 | bitrdi | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝑢 )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 34 |  | peano2b | ⊢ ( 𝑢  ∈  ω  ↔  suc  𝑢  ∈  ω ) | 
						
							| 35 | 27 | sucex | ⊢ suc  𝑢  ∈  V | 
						
							| 36 | 1 2 35 3 | inf3lemc | ⊢ ( suc  𝑢  ∈  ω  →  ( 𝐹 ‘ suc  suc  𝑢 )  =  ( 𝐺 ‘ ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 37 | 34 36 | sylbi | ⊢ ( 𝑢  ∈  ω  →  ( 𝐹 ‘ suc  suc  𝑢 )  =  ( 𝐺 ‘ ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 38 | 37 | eleq2d | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  suc  𝑢 )  ↔  𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 39 |  | fvex | ⊢ ( 𝐹 ‘ suc  𝑢 )  ∈  V | 
						
							| 40 | 1 2 30 39 | inf3lema | ⊢ ( 𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ suc  𝑢 ) )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 41 | 38 40 | bitrdi | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  suc  𝑢 )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 42 | 33 41 | imbi12d | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑣  ∈  ( 𝐹 ‘ suc  𝑢 )  →  𝑣  ∈  ( 𝐹 ‘ suc  suc  𝑢 ) )  ↔  ( ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) )  →  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) ) ) ) ) | 
						
							| 43 | 26 42 | imbitrrid | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 )  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝑢 )  →  𝑣  ∈  ( 𝐹 ‘ suc  suc  𝑢 ) ) ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( 𝑢  ∈  ω  ∧  ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) )  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝑢 )  →  𝑣  ∈  ( 𝐹 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 45 | 44 | ssrdv | ⊢ ( ( 𝑢  ∈  ω  ∧  ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 ) )  →  ( 𝐹 ‘ suc  𝑢 )  ⊆  ( 𝐹 ‘ suc  suc  𝑢 ) ) | 
						
							| 46 | 45 | ex | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝐹 ‘ 𝑢 )  ⊆  ( 𝐹 ‘ suc  𝑢 )  →  ( 𝐹 ‘ suc  𝑢 )  ⊆  ( 𝐹 ‘ suc  suc  𝑢 ) ) ) | 
						
							| 47 | 8 12 16 20 23 46 | finds | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 ) ) |