Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
2 |
|
inf3lem.2 |
⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) |
3 |
|
inf3lem.3 |
⊢ 𝐴 ∈ V |
4 |
|
inf3lem.4 |
⊢ 𝐵 ∈ V |
5 |
|
fveq2 |
⊢ ( 𝑣 = ∅ → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ ∅ ) ) |
6 |
5
|
neeq1d |
⊢ ( 𝑣 = ∅ → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑣 = ∅ → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑣 = 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
9 |
8
|
neeq1d |
⊢ ( 𝑣 = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑣 = 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑣 = suc 𝑢 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ suc 𝑢 ) ) |
12 |
11
|
neeq1d |
⊢ ( 𝑣 = suc 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
13 |
12
|
imbi2d |
⊢ ( 𝑣 = suc 𝑢 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) |
15 |
14
|
neeq1d |
⊢ ( 𝑣 = 𝐴 → ( ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑣 = 𝐴 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑣 ) ≠ 𝑥 ) ↔ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) ) |
17 |
1 2 3 4
|
inf3lemb |
⊢ ( 𝐹 ‘ ∅ ) = ∅ |
18 |
17
|
eqeq1i |
⊢ ( ( 𝐹 ‘ ∅ ) = 𝑥 ↔ ∅ = 𝑥 ) |
19 |
|
eqcom |
⊢ ( ∅ = 𝑥 ↔ 𝑥 = ∅ ) |
20 |
18 19
|
sylbb |
⊢ ( ( 𝐹 ‘ ∅ ) = 𝑥 → 𝑥 = ∅ ) |
21 |
20
|
necon3i |
⊢ ( 𝑥 ≠ ∅ → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) |
22 |
21
|
adantr |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ ∅ ) ≠ 𝑥 ) |
23 |
|
vex |
⊢ 𝑢 ∈ V |
24 |
1 2 23 4
|
inf3lemd |
⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ) |
25 |
|
df-pss |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ 𝑥 ↔ ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) ) |
26 |
|
pssnel |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ 𝑥 → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
27 |
25 26
|
sylbir |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
28 |
|
ssel |
⊢ ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑣 ∈ 𝑥 → 𝑣 ∈ ∪ 𝑥 ) ) |
29 |
|
eluni |
⊢ ( 𝑣 ∈ ∪ 𝑥 ↔ ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) ) |
30 |
28 29
|
syl6ib |
⊢ ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑣 ∈ 𝑥 → ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) ) ) |
31 |
|
eleq2 |
⊢ ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑓 ∈ 𝑥 ) ) |
32 |
31
|
biimparc |
⊢ ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ) |
33 |
1 2 23 4
|
inf3lemc |
⊢ ( 𝑢 ∈ ω → ( 𝐹 ‘ suc 𝑢 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) |
34 |
33
|
eleq2d |
⊢ ( 𝑢 ∈ ω → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) ↔ 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) |
35 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑓 ∩ 𝑥 ) ↔ ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) ) |
36 |
|
vex |
⊢ 𝑓 ∈ V |
37 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑢 ) ∈ V |
38 |
1 2 36 37
|
inf3lema |
⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ↔ ( 𝑓 ∈ 𝑥 ∧ ( 𝑓 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) ) |
39 |
38
|
simprbi |
⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑓 ∩ 𝑥 ) ⊆ ( 𝐹 ‘ 𝑢 ) ) |
40 |
39
|
sseld |
⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( 𝑣 ∈ ( 𝑓 ∩ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
41 |
35 40
|
syl5bir |
⊢ ( 𝑓 ∈ ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
42 |
34 41
|
syl6bi |
⊢ ( 𝑢 ∈ ω → ( 𝑓 ∈ ( 𝐹 ‘ suc 𝑢 ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
43 |
32 42
|
syl5 |
⊢ ( 𝑢 ∈ ω → ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
44 |
43
|
com23 |
⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ 𝑓 ∧ 𝑣 ∈ 𝑥 ) → ( ( 𝑓 ∈ 𝑥 ∧ ( 𝐹 ‘ suc 𝑢 ) = 𝑥 ) → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
45 |
44
|
exp5c |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ 𝑓 → ( 𝑣 ∈ 𝑥 → ( 𝑓 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) |
46 |
45
|
com34 |
⊢ ( 𝑢 ∈ ω → ( 𝑣 ∈ 𝑓 → ( 𝑓 ∈ 𝑥 → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) |
47 |
46
|
impd |
⊢ ( 𝑢 ∈ ω → ( ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
48 |
47
|
exlimdv |
⊢ ( 𝑢 ∈ ω → ( ∃ 𝑓 ( 𝑣 ∈ 𝑓 ∧ 𝑓 ∈ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
49 |
30 48
|
sylan9r |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) ) |
50 |
49
|
pm2.43d |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) ) |
51 |
|
id |
⊢ ( ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) ) |
52 |
51
|
necon3bd |
⊢ ( ( ( 𝐹 ‘ suc 𝑢 ) = 𝑥 → 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
53 |
50 52
|
syl6 |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑣 ∈ 𝑥 → ( ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
54 |
53
|
impd |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
55 |
54
|
exlimdv |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ∃ 𝑣 ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑣 ∈ ( 𝐹 ‘ 𝑢 ) ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
56 |
27 55
|
syl5 |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑢 ) ⊆ 𝑥 ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
57 |
24 56
|
sylani |
⊢ ( ( 𝑢 ∈ ω ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) |
58 |
57
|
exp4b |
⊢ ( 𝑢 ∈ ω → ( 𝑥 ⊆ ∪ 𝑥 → ( 𝑢 ∈ ω → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) ) |
59 |
58
|
pm2.43a |
⊢ ( 𝑢 ∈ ω → ( 𝑥 ⊆ ∪ 𝑥 → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
60 |
59
|
adantld |
⊢ ( 𝑢 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
61 |
60
|
a2d |
⊢ ( 𝑢 ∈ ω → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝑢 ) ≠ 𝑥 ) → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ suc 𝑢 ) ≠ 𝑥 ) ) ) |
62 |
7 10 13 16 22 61
|
finds |
⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |
63 |
62
|
com12 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐴 ∈ ω → ( 𝐹 ‘ 𝐴 ) ≠ 𝑥 ) ) |