| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑣  =  ∅  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 6 | 5 | neeq1d | ⊢ ( 𝑣  =  ∅  →  ( ( 𝐹 ‘ 𝑣 )  ≠  𝑥  ↔  ( 𝐹 ‘ ∅ )  ≠  𝑥 ) ) | 
						
							| 7 | 6 | imbi2d | ⊢ ( 𝑣  =  ∅  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  ≠  𝑥 )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ ∅ )  ≠  𝑥 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑣  =  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 9 | 8 | neeq1d | ⊢ ( 𝑣  =  𝑢  →  ( ( 𝐹 ‘ 𝑣 )  ≠  𝑥  ↔  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑣  =  𝑢  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  ≠  𝑥 )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑣  =  suc  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 12 | 11 | neeq1d | ⊢ ( 𝑣  =  suc  𝑢  →  ( ( 𝐹 ‘ 𝑣 )  ≠  𝑥  ↔  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑣  =  suc  𝑢  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  ≠  𝑥 )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 15 | 14 | neeq1d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝐹 ‘ 𝑣 )  ≠  𝑥  ↔  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑣  =  𝐴  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑣 )  ≠  𝑥 )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) ) | 
						
							| 17 | 1 2 3 4 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ )  =  ∅ | 
						
							| 18 | 17 | eqeq1i | ⊢ ( ( 𝐹 ‘ ∅ )  =  𝑥  ↔  ∅  =  𝑥 ) | 
						
							| 19 |  | eqcom | ⊢ ( ∅  =  𝑥  ↔  𝑥  =  ∅ ) | 
						
							| 20 | 18 19 | sylbb | ⊢ ( ( 𝐹 ‘ ∅ )  =  𝑥  →  𝑥  =  ∅ ) | 
						
							| 21 | 20 | necon3i | ⊢ ( 𝑥  ≠  ∅  →  ( 𝐹 ‘ ∅ )  ≠  𝑥 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ ∅ )  ≠  𝑥 ) | 
						
							| 23 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 24 | 1 2 23 4 | inf3lemd | ⊢ ( 𝑢  ∈  ω  →  ( 𝐹 ‘ 𝑢 )  ⊆  𝑥 ) | 
						
							| 25 |  | df-pss | ⊢ ( ( 𝐹 ‘ 𝑢 )  ⊊  𝑥  ↔  ( ( 𝐹 ‘ 𝑢 )  ⊆  𝑥  ∧  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 ) ) | 
						
							| 26 |  | pssnel | ⊢ ( ( 𝐹 ‘ 𝑢 )  ⊊  𝑥  →  ∃ 𝑣 ( 𝑣  ∈  𝑥  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 27 | 25 26 | sylbir | ⊢ ( ( ( 𝐹 ‘ 𝑢 )  ⊆  𝑥  ∧  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 )  →  ∃ 𝑣 ( 𝑣  ∈  𝑥  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 28 |  | ssel | ⊢ ( 𝑥  ⊆  ∪  𝑥  →  ( 𝑣  ∈  𝑥  →  𝑣  ∈  ∪  𝑥 ) ) | 
						
							| 29 |  | eluni | ⊢ ( 𝑣  ∈  ∪  𝑥  ↔  ∃ 𝑓 ( 𝑣  ∈  𝑓  ∧  𝑓  ∈  𝑥 ) ) | 
						
							| 30 | 28 29 | imbitrdi | ⊢ ( 𝑥  ⊆  ∪  𝑥  →  ( 𝑣  ∈  𝑥  →  ∃ 𝑓 ( 𝑣  ∈  𝑓  ∧  𝑓  ∈  𝑥 ) ) ) | 
						
							| 31 |  | eleq2 | ⊢ ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  ( 𝑓  ∈  ( 𝐹 ‘ suc  𝑢 )  ↔  𝑓  ∈  𝑥 ) ) | 
						
							| 32 | 31 | biimparc | ⊢ ( ( 𝑓  ∈  𝑥  ∧  ( 𝐹 ‘ suc  𝑢 )  =  𝑥 )  →  𝑓  ∈  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 33 | 1 2 23 4 | inf3lemc | ⊢ ( 𝑢  ∈  ω  →  ( 𝐹 ‘ suc  𝑢 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 34 | 33 | eleq2d | ⊢ ( 𝑢  ∈  ω  →  ( 𝑓  ∈  ( 𝐹 ‘ suc  𝑢 )  ↔  𝑓  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 35 |  | elin | ⊢ ( 𝑣  ∈  ( 𝑓  ∩  𝑥 )  ↔  ( 𝑣  ∈  𝑓  ∧  𝑣  ∈  𝑥 ) ) | 
						
							| 36 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 37 |  | fvex | ⊢ ( 𝐹 ‘ 𝑢 )  ∈  V | 
						
							| 38 | 1 2 36 37 | inf3lema | ⊢ ( 𝑓  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) )  ↔  ( 𝑓  ∈  𝑥  ∧  ( 𝑓  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 39 | 38 | simprbi | ⊢ ( 𝑓  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) )  →  ( 𝑓  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 40 | 39 | sseld | ⊢ ( 𝑓  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) )  →  ( 𝑣  ∈  ( 𝑓  ∩  𝑥 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 41 | 35 40 | biimtrrid | ⊢ ( 𝑓  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑢 ) )  →  ( ( 𝑣  ∈  𝑓  ∧  𝑣  ∈  𝑥 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 42 | 34 41 | biimtrdi | ⊢ ( 𝑢  ∈  ω  →  ( 𝑓  ∈  ( 𝐹 ‘ suc  𝑢 )  →  ( ( 𝑣  ∈  𝑓  ∧  𝑣  ∈  𝑥 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 43 | 32 42 | syl5 | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑓  ∈  𝑥  ∧  ( 𝐹 ‘ suc  𝑢 )  =  𝑥 )  →  ( ( 𝑣  ∈  𝑓  ∧  𝑣  ∈  𝑥 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 44 | 43 | com23 | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑣  ∈  𝑓  ∧  𝑣  ∈  𝑥 )  →  ( ( 𝑓  ∈  𝑥  ∧  ( 𝐹 ‘ suc  𝑢 )  =  𝑥 )  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 45 | 44 | exp5c | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  𝑓  →  ( 𝑣  ∈  𝑥  →  ( 𝑓  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) | 
						
							| 46 | 45 | com34 | ⊢ ( 𝑢  ∈  ω  →  ( 𝑣  ∈  𝑓  →  ( 𝑓  ∈  𝑥  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) ) ) | 
						
							| 47 | 46 | impd | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑣  ∈  𝑓  ∧  𝑓  ∈  𝑥 )  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) ) | 
						
							| 48 | 47 | exlimdv | ⊢ ( 𝑢  ∈  ω  →  ( ∃ 𝑓 ( 𝑣  ∈  𝑓  ∧  𝑓  ∈  𝑥 )  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) ) | 
						
							| 49 | 30 48 | sylan9r | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝑣  ∈  𝑥  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) ) | 
						
							| 50 | 49 | pm2.43d | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝑣  ∈  𝑥  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 51 |  | id | ⊢ ( ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) )  →  ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 52 | 51 | necon3bd | ⊢ ( ( ( 𝐹 ‘ suc  𝑢 )  =  𝑥  →  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) )  →  ( ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 53 | 50 52 | syl6 | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝑣  ∈  𝑥  →  ( ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 54 | 53 | impd | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( 𝑣  ∈  𝑥  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 55 | 54 | exlimdv | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ∃ 𝑣 ( 𝑣  ∈  𝑥  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝑢 ) )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 56 | 27 55 | syl5 | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( ( 𝐹 ‘ 𝑢 )  ⊆  𝑥  ∧  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 57 | 24 56 | sylani | ⊢ ( ( 𝑢  ∈  ω  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( 𝑢  ∈  ω  ∧  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) | 
						
							| 58 | 57 | exp4b | ⊢ ( 𝑢  ∈  ω  →  ( 𝑥  ⊆  ∪  𝑥  →  ( 𝑢  ∈  ω  →  ( ( 𝐹 ‘ 𝑢 )  ≠  𝑥  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) ) | 
						
							| 59 | 58 | pm2.43a | ⊢ ( 𝑢  ∈  ω  →  ( 𝑥  ⊆  ∪  𝑥  →  ( ( 𝐹 ‘ 𝑢 )  ≠  𝑥  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 60 | 59 | adantld | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( 𝐹 ‘ 𝑢 )  ≠  𝑥  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 61 | 60 | a2d | ⊢ ( 𝑢  ∈  ω  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝑢 )  ≠  𝑥 )  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ suc  𝑢 )  ≠  𝑥 ) ) ) | 
						
							| 62 | 7 10 13 16 22 61 | finds | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) | 
						
							| 63 | 62 | com12 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) |