| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 | 1 2 3 4 | inf3lemd | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 6 | 1 2 3 4 | inf3lem2 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) | 
						
							| 7 | 6 | com12 | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 ) ) | 
						
							| 8 |  | pssdifn0 | ⊢ ( ( ( 𝐹 ‘ 𝐴 )  ⊆  𝑥  ∧  ( 𝐹 ‘ 𝐴 )  ≠  𝑥 )  →  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ≠  ∅ ) | 
						
							| 9 | 5 7 8 | syl6an | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ≠  ∅ ) ) | 
						
							| 10 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 11 | 10 | difexi | ⊢ ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∈  V | 
						
							| 12 |  | zfreg | ⊢ ( ( ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∈  V  ∧  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ≠  ∅ )  →  ∃ 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ ) | 
						
							| 13 | 11 12 | mpan | ⊢ ( ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ≠  ∅  →  ∃ 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ ) | 
						
							| 14 |  | eldifi | ⊢ ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  →  𝑣  ∈  𝑥 ) | 
						
							| 15 |  | inssdif0 | ⊢ ( ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝐴 )  ↔  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ ) | 
						
							| 16 | 15 | biimpri | ⊢ ( ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅  →  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 17 | 14 16 | anim12i | ⊢ ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 18 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 19 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 20 | 1 2 18 19 | inf3lema | ⊢ ( 𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) )  ↔  ( 𝑣  ∈  𝑥  ∧  ( 𝑣  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 21 | 17 20 | sylibr | ⊢ ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 22 | 1 2 3 4 | inf3lemc | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ suc  𝐴 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( 𝐴  ∈  ω  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  ↔  𝑣  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 21 23 | imbitrrid | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  𝑣  ∈  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 25 |  | eldifn | ⊢ ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  →  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 27 | 24 26 | jca2 | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 28 |  | eleq2 | ⊢ ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ suc  𝐴 )  →  ( 𝑣  ∈  ( 𝐹 ‘ 𝐴 )  ↔  𝑣  ∈  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 29 | 28 | biimprd | ⊢ ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ suc  𝐴 )  →  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  →  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 30 |  | iman | ⊢ ( ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  →  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) )  ↔  ¬  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ suc  𝐴 )  →  ¬  ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 32 | 31 | necon2ai | ⊢ ( ( 𝑣  ∈  ( 𝐹 ‘ suc  𝐴 )  ∧  ¬  𝑣  ∈  ( 𝐹 ‘ 𝐴 ) )  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) | 
						
							| 33 | 27 32 | syl6 | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ∧  ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅ )  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 34 | 33 | expd | ⊢ ( 𝐴  ∈  ω  →  ( 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  →  ( ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) ) | 
						
							| 35 | 34 | rexlimdv | ⊢ ( 𝐴  ∈  ω  →  ( ∃ 𝑣  ∈  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) ( 𝑣  ∩  ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) ) )  =  ∅  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 36 | 13 35 | syl5 | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝑥  ∖  ( 𝐹 ‘ 𝐴 ) )  ≠  ∅  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 37 | 9 36 | syldc | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) |