| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 | 1 2 3 4 | inf3lem1 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 7 | 1 2 3 4 | inf3lem3 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 8 | 6 7 | jcad | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 )  ∧  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) ) | 
						
							| 9 |  | df-pss | ⊢ ( ( 𝐹 ‘ 𝐴 )  ⊊  ( 𝐹 ‘ suc  𝐴 )  ↔  ( ( 𝐹 ‘ 𝐴 )  ⊆  ( 𝐹 ‘ suc  𝐴 )  ∧  ( 𝐹 ‘ 𝐴 )  ≠  ( 𝐹 ‘ suc  𝐴 ) ) ) | 
						
							| 10 | 8 9 | imbitrrdi | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊊  ( 𝐹 ‘ suc  𝐴 ) ) ) |