| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | elnn | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐴  ∈  ω )  →  𝐵  ∈  ω ) | 
						
							| 6 | 5 | ancoms | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  ω ) | 
						
							| 7 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 8 |  | ordsucss | ⊢ ( Ord  𝐴  →  ( 𝐵  ∈  𝐴  →  suc  𝐵  ⊆  𝐴 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ∈  𝐴  →  suc  𝐵  ⊆  𝐴 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐵  ∈  𝐴  →  suc  𝐵  ⊆  𝐴 ) ) | 
						
							| 11 |  | peano2b | ⊢ ( 𝐵  ∈  ω  ↔  suc  𝐵  ∈  ω ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑣  =  suc  𝐵  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ suc  𝐵 ) ) | 
						
							| 13 | 12 | psseq2d | ⊢ ( 𝑣  =  suc  𝐵  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝐵 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑣  =  suc  𝐵  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝐵 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑣  =  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝑢 ) ) | 
						
							| 16 | 15 | psseq2d | ⊢ ( 𝑣  =  𝑢  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑣  =  𝑢  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑣  =  suc  𝑢  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 19 | 18 | psseq2d | ⊢ ( 𝑣  =  suc  𝑢  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 20 | 19 | imbi2d | ⊢ ( 𝑣  =  suc  𝑢  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑣  =  𝐴  →  ( 𝐹 ‘ 𝑣 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 22 | 21 | psseq2d | ⊢ ( 𝑣  =  𝐴  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 )  ↔  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( 𝑣  =  𝐴  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑣 ) )  ↔  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 24 | 1 2 4 4 | inf3lem4 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐵  ∈  ω  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝐵 ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( 𝐵  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝐵 ) ) ) | 
						
							| 26 | 11 25 | sylbir | ⊢ ( suc  𝐵  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝐵 ) ) ) | 
						
							| 27 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 28 | 1 2 27 4 | inf3lem4 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝑢  ∈  ω  →  ( 𝐹 ‘ 𝑢 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 29 |  | psstr | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 )  ∧  ( 𝐹 ‘ 𝑢 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) | 
						
							| 30 | 29 | expcom | ⊢ ( ( 𝐹 ‘ 𝑢 )  ⊊  ( 𝐹 ‘ suc  𝑢 )  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) | 
						
							| 31 | 28 30 | syl6com | ⊢ ( 𝑢  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 32 | 31 | a2d | ⊢ ( 𝑢  ∈  ω  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 ) )  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝑢  ∈  ω  ∧  suc  𝐵  ∈  ω )  ∧  suc  𝐵  ⊆  𝑢 )  →  ( ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝑢 ) )  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ suc  𝑢 ) ) ) ) | 
						
							| 34 | 14 17 20 23 26 33 | findsg | ⊢ ( ( ( 𝐴  ∈  ω  ∧  suc  𝐵  ∈  ω )  ∧  suc  𝐵  ⊆  𝐴 )  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 35 | 34 | ex | ⊢ ( ( 𝐴  ∈  ω  ∧  suc  𝐵  ∈  ω )  →  ( suc  𝐵  ⊆  𝐴  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 36 | 11 35 | sylan2b | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( suc  𝐵  ⊆  𝐴  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 37 | 10 36 | syld | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐵  ∈  𝐴  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 38 | 37 | impancom | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( 𝐵  ∈  ω  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 39 | 6 38 | mpd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 40 | 39 | com12 | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  ∪  𝑥 )  →  ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  𝐴 )  →  ( 𝐹 ‘ 𝐵 )  ⊊  ( 𝐹 ‘ 𝐴 ) ) ) |