Metamath Proof Explorer


Theorem inf3lem6

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion inf3lem6 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 )

Proof

Step Hyp Ref Expression
1 inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
2 inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
3 inf3lem.3 𝐴 ∈ V
4 inf3lem.4 𝐵 ∈ V
5 vex 𝑢 ∈ V
6 vex 𝑣 ∈ V
7 1 2 5 6 inf3lem5 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣𝑢 ) → ( 𝐹𝑣 ) ⊊ ( 𝐹𝑢 ) ) )
8 dfpss2 ( ( 𝐹𝑣 ) ⊊ ( 𝐹𝑢 ) ↔ ( ( 𝐹𝑣 ) ⊆ ( 𝐹𝑢 ) ∧ ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
9 8 simprbi ( ( 𝐹𝑣 ) ⊊ ( 𝐹𝑢 ) → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) )
10 7 9 syl6 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣𝑢 ) → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
11 10 expdimp ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ 𝑢 ∈ ω ) → ( 𝑣𝑢 → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
12 11 adantrl ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣𝑢 → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
13 1 2 6 5 inf3lem5 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢𝑣 ) → ( 𝐹𝑢 ) ⊊ ( 𝐹𝑣 ) ) )
14 dfpss2 ( ( 𝐹𝑢 ) ⊊ ( 𝐹𝑣 ) ↔ ( ( 𝐹𝑢 ) ⊆ ( 𝐹𝑣 ) ∧ ¬ ( 𝐹𝑢 ) = ( 𝐹𝑣 ) ) )
15 14 simprbi ( ( 𝐹𝑢 ) ⊊ ( 𝐹𝑣 ) → ¬ ( 𝐹𝑢 ) = ( 𝐹𝑣 ) )
16 eqcom ( ( 𝐹𝑢 ) = ( 𝐹𝑣 ) ↔ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) )
17 15 16 sylnib ( ( 𝐹𝑢 ) ⊊ ( 𝐹𝑣 ) → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) )
18 13 17 syl6 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢𝑣 ) → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
19 18 expdimp ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ 𝑣 ∈ ω ) → ( 𝑢𝑣 → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
20 19 adantrr ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑢𝑣 → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
21 12 20 jaod ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝑣𝑢𝑢𝑣 ) → ¬ ( 𝐹𝑣 ) = ( 𝐹𝑢 ) ) )
22 21 con2d ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹𝑣 ) = ( 𝐹𝑢 ) → ¬ ( 𝑣𝑢𝑢𝑣 ) ) )
23 nnord ( 𝑣 ∈ ω → Ord 𝑣 )
24 nnord ( 𝑢 ∈ ω → Ord 𝑢 )
25 ordtri3 ( ( Ord 𝑣 ∧ Ord 𝑢 ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣𝑢𝑢𝑣 ) ) )
26 23 24 25 syl2an ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣𝑢𝑢𝑣 ) ) )
27 26 adantl ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣𝑢𝑢𝑣 ) ) )
28 22 27 sylibrd ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹𝑣 ) = ( 𝐹𝑢 ) → 𝑣 = 𝑢 ) )
29 28 ralrimivva ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹𝑣 ) = ( 𝐹𝑢 ) → 𝑣 = 𝑢 ) )
30 frfnom ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω
31 fneq1 ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → ( 𝐹 Fn ω ↔ ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω ) )
32 30 31 mpbiri ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → 𝐹 Fn ω )
33 fvelrnb ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑣 ∈ ω ( 𝐹𝑣 ) = 𝑢 ) )
34 1 2 6 4 inf3lemd ( 𝑣 ∈ ω → ( 𝐹𝑣 ) ⊆ 𝑥 )
35 fvex ( 𝐹𝑣 ) ∈ V
36 35 elpw ( ( 𝐹𝑣 ) ∈ 𝒫 𝑥 ↔ ( 𝐹𝑣 ) ⊆ 𝑥 )
37 34 36 sylibr ( 𝑣 ∈ ω → ( 𝐹𝑣 ) ∈ 𝒫 𝑥 )
38 eleq1 ( ( 𝐹𝑣 ) = 𝑢 → ( ( 𝐹𝑣 ) ∈ 𝒫 𝑥𝑢 ∈ 𝒫 𝑥 ) )
39 37 38 syl5ibcom ( 𝑣 ∈ ω → ( ( 𝐹𝑣 ) = 𝑢𝑢 ∈ 𝒫 𝑥 ) )
40 39 rexlimiv ( ∃ 𝑣 ∈ ω ( 𝐹𝑣 ) = 𝑢𝑢 ∈ 𝒫 𝑥 )
41 33 40 syl6bi ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹𝑢 ∈ 𝒫 𝑥 ) )
42 41 ssrdv ( 𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥 )
43 42 ancli ( 𝐹 Fn ω → ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) )
44 2 32 43 mp2b ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 )
45 df-f ( 𝐹 : ω ⟶ 𝒫 𝑥 ↔ ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) )
46 44 45 mpbir 𝐹 : ω ⟶ 𝒫 𝑥
47 29 46 jctil ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹𝑣 ) = ( 𝐹𝑢 ) → 𝑣 = 𝑢 ) ) )
48 dff13 ( 𝐹 : ω –1-1→ 𝒫 𝑥 ↔ ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹𝑣 ) = ( 𝐹𝑢 ) → 𝑣 = 𝑢 ) ) )
49 47 48 sylibr ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 )