Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
2 |
|
inf3lem.2 |
⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) |
3 |
|
inf3lem.3 |
⊢ 𝐴 ∈ V |
4 |
|
inf3lem.4 |
⊢ 𝐵 ∈ V |
5 |
|
vex |
⊢ 𝑢 ∈ V |
6 |
|
vex |
⊢ 𝑣 ∈ V |
7 |
1 2 5 6
|
inf3lem5 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣 ∈ 𝑢 ) → ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) ) ) |
8 |
|
dfpss2 |
⊢ ( ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) ↔ ( ( 𝐹 ‘ 𝑣 ) ⊆ ( 𝐹 ‘ 𝑢 ) ∧ ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
9 |
8
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑣 ) ⊊ ( 𝐹 ‘ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
10 |
7 9
|
syl6 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑢 ∈ ω ∧ 𝑣 ∈ 𝑢 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
11 |
10
|
expdimp |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ 𝑢 ∈ ω ) → ( 𝑣 ∈ 𝑢 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
12 |
11
|
adantrl |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣 ∈ 𝑢 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
13 |
1 2 6 5
|
inf3lem5 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ 𝑣 ) → ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) ) ) |
14 |
|
dfpss2 |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) ↔ ( ( 𝐹 ‘ 𝑢 ) ⊆ ( 𝐹 ‘ 𝑣 ) ∧ ¬ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) ) |
15 |
14
|
simprbi |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) |
16 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ↔ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
17 |
15 16
|
sylnib |
⊢ ( ( 𝐹 ‘ 𝑢 ) ⊊ ( 𝐹 ‘ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) |
18 |
13 17
|
syl6 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
19 |
18
|
expdimp |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ 𝑣 ∈ ω ) → ( 𝑢 ∈ 𝑣 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
20 |
19
|
adantrr |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑢 ∈ 𝑣 → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
21 |
12 20
|
jaod |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) → ¬ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) ) ) |
22 |
21
|
con2d |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
23 |
|
nnord |
⊢ ( 𝑣 ∈ ω → Ord 𝑣 ) |
24 |
|
nnord |
⊢ ( 𝑢 ∈ ω → Ord 𝑢 ) |
25 |
|
ordtri3 |
⊢ ( ( Ord 𝑣 ∧ Ord 𝑢 ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( 𝑣 = 𝑢 ↔ ¬ ( 𝑣 ∈ 𝑢 ∨ 𝑢 ∈ 𝑣 ) ) ) |
28 |
22 27
|
sylibrd |
⊢ ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ∧ ( 𝑣 ∈ ω ∧ 𝑢 ∈ ω ) ) → ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) |
29 |
28
|
ralrimivva |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) |
30 |
|
frfnom |
⊢ ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω |
31 |
|
fneq1 |
⊢ ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → ( 𝐹 Fn ω ↔ ( rec ( 𝐺 , ∅ ) ↾ ω ) Fn ω ) ) |
32 |
30 31
|
mpbiri |
⊢ ( 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) → 𝐹 Fn ω ) |
33 |
|
fvelrnb |
⊢ ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹 ↔ ∃ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) = 𝑢 ) ) |
34 |
1 2 6 4
|
inf3lemd |
⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
35 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑣 ) ∈ V |
36 |
35
|
elpw |
⊢ ( ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ↔ ( 𝐹 ‘ 𝑣 ) ⊆ 𝑥 ) |
37 |
34 36
|
sylibr |
⊢ ( 𝑣 ∈ ω → ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ) |
38 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑣 ) = 𝑢 → ( ( 𝐹 ‘ 𝑣 ) ∈ 𝒫 𝑥 ↔ 𝑢 ∈ 𝒫 𝑥 ) ) |
39 |
37 38
|
syl5ibcom |
⊢ ( 𝑣 ∈ ω → ( ( 𝐹 ‘ 𝑣 ) = 𝑢 → 𝑢 ∈ 𝒫 𝑥 ) ) |
40 |
39
|
rexlimiv |
⊢ ( ∃ 𝑣 ∈ ω ( 𝐹 ‘ 𝑣 ) = 𝑢 → 𝑢 ∈ 𝒫 𝑥 ) |
41 |
33 40
|
syl6bi |
⊢ ( 𝐹 Fn ω → ( 𝑢 ∈ ran 𝐹 → 𝑢 ∈ 𝒫 𝑥 ) ) |
42 |
41
|
ssrdv |
⊢ ( 𝐹 Fn ω → ran 𝐹 ⊆ 𝒫 𝑥 ) |
43 |
42
|
ancli |
⊢ ( 𝐹 Fn ω → ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) ) |
44 |
2 32 43
|
mp2b |
⊢ ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) |
45 |
|
df-f |
⊢ ( 𝐹 : ω ⟶ 𝒫 𝑥 ↔ ( 𝐹 Fn ω ∧ ran 𝐹 ⊆ 𝒫 𝑥 ) ) |
46 |
44 45
|
mpbir |
⊢ 𝐹 : ω ⟶ 𝒫 𝑥 |
47 |
29 46
|
jctil |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) ) |
48 |
|
dff13 |
⊢ ( 𝐹 : ω –1-1→ 𝒫 𝑥 ↔ ( 𝐹 : ω ⟶ 𝒫 𝑥 ∧ ∀ 𝑣 ∈ ω ∀ 𝑢 ∈ ω ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝑢 ) → 𝑣 = 𝑢 ) ) ) |
49 |
47 48
|
sylibr |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 ) |