Metamath Proof Explorer


Theorem inf3lem7

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. In the proof, we invoke the Axiom of Replacement in the form of f1dmex . (Contributed by NM, 29-Oct-1996) (Proof shortened by Mario Carneiro, 19-Jan-2013)

Ref Expression
Hypotheses inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion inf3lem7 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ω ∈ V )

Proof

Step Hyp Ref Expression
1 inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
2 inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
3 inf3lem.3 𝐴 ∈ V
4 inf3lem.4 𝐵 ∈ V
5 1 2 3 4 inf3lem6 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → 𝐹 : ω –1-1→ 𝒫 𝑥 )
6 vpwex 𝒫 𝑥 ∈ V
7 f1dmex ( ( 𝐹 : ω –1-1→ 𝒫 𝑥 ∧ 𝒫 𝑥 ∈ V ) → ω ∈ V )
8 5 6 7 sylancl ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ω ∈ V )