| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inf3lem.1 |
⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
| 2 |
|
inf3lem.2 |
⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) |
| 3 |
|
inf3lem.3 |
⊢ 𝐴 ∈ V |
| 4 |
|
inf3lem.4 |
⊢ 𝐵 ∈ V |
| 5 |
|
ineq1 |
⊢ ( 𝑓 = 𝐴 → ( 𝑓 ∩ 𝑥 ) = ( 𝐴 ∩ 𝑥 ) ) |
| 6 |
5
|
sseq1d |
⊢ ( 𝑓 = 𝐴 → ( ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐵 ) ) |
| 7 |
|
sseq2 |
⊢ ( 𝑣 = 𝐵 → ( ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 ↔ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 ) ) |
| 8 |
7
|
rabbidv |
⊢ ( 𝑣 = 𝐵 → { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ) |
| 9 |
|
sseq2 |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 ↔ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 ) ) |
| 10 |
9
|
rabbidv |
⊢ ( 𝑦 = 𝑣 → { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } = { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 11 |
|
ineq1 |
⊢ ( 𝑤 = 𝑓 → ( 𝑤 ∩ 𝑥 ) = ( 𝑓 ∩ 𝑥 ) ) |
| 12 |
11
|
sseq1d |
⊢ ( 𝑤 = 𝑓 → ( ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 ↔ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 ) ) |
| 13 |
12
|
cbvrabv |
⊢ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑣 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } |
| 14 |
10 13
|
eqtrdi |
⊢ ( 𝑦 = 𝑣 → { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 15 |
14
|
cbvmptv |
⊢ ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) = ( 𝑣 ∈ V ↦ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 16 |
1 15
|
eqtri |
⊢ 𝐺 = ( 𝑣 ∈ V ↦ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝑣 } ) |
| 17 |
|
vex |
⊢ 𝑥 ∈ V |
| 18 |
17
|
rabex |
⊢ { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ∈ V |
| 19 |
8 16 18
|
fvmpt |
⊢ ( 𝐵 ∈ V → ( 𝐺 ‘ 𝐵 ) = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } ) |
| 20 |
4 19
|
ax-mp |
⊢ ( 𝐺 ‘ 𝐵 ) = { 𝑓 ∈ 𝑥 ∣ ( 𝑓 ∩ 𝑥 ) ⊆ 𝐵 } |
| 21 |
6 20
|
elrab2 |
⊢ ( 𝐴 ∈ ( 𝐺 ‘ 𝐵 ) ↔ ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∩ 𝑥 ) ⊆ 𝐵 ) ) |