Metamath Proof Explorer


Theorem inf3lema

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion inf3lema ( 𝐴 ∈ ( 𝐺𝐵 ) ↔ ( 𝐴𝑥 ∧ ( 𝐴𝑥 ) ⊆ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
2 inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
3 inf3lem.3 𝐴 ∈ V
4 inf3lem.4 𝐵 ∈ V
5 ineq1 ( 𝑓 = 𝐴 → ( 𝑓𝑥 ) = ( 𝐴𝑥 ) )
6 5 sseq1d ( 𝑓 = 𝐴 → ( ( 𝑓𝑥 ) ⊆ 𝐵 ↔ ( 𝐴𝑥 ) ⊆ 𝐵 ) )
7 sseq2 ( 𝑣 = 𝐵 → ( ( 𝑓𝑥 ) ⊆ 𝑣 ↔ ( 𝑓𝑥 ) ⊆ 𝐵 ) )
8 7 rabbidv ( 𝑣 = 𝐵 → { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝑣 } = { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝐵 } )
9 sseq2 ( 𝑦 = 𝑣 → ( ( 𝑤𝑥 ) ⊆ 𝑦 ↔ ( 𝑤𝑥 ) ⊆ 𝑣 ) )
10 9 rabbidv ( 𝑦 = 𝑣 → { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } = { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑣 } )
11 ineq1 ( 𝑤 = 𝑓 → ( 𝑤𝑥 ) = ( 𝑓𝑥 ) )
12 11 sseq1d ( 𝑤 = 𝑓 → ( ( 𝑤𝑥 ) ⊆ 𝑣 ↔ ( 𝑓𝑥 ) ⊆ 𝑣 ) )
13 12 cbvrabv { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑣 } = { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝑣 }
14 10 13 eqtrdi ( 𝑦 = 𝑣 → { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } = { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝑣 } )
15 14 cbvmptv ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } ) = ( 𝑣 ∈ V ↦ { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝑣 } )
16 1 15 eqtri 𝐺 = ( 𝑣 ∈ V ↦ { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝑣 } )
17 vex 𝑥 ∈ V
18 17 rabex { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝐵 } ∈ V
19 8 16 18 fvmpt ( 𝐵 ∈ V → ( 𝐺𝐵 ) = { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝐵 } )
20 4 19 ax-mp ( 𝐺𝐵 ) = { 𝑓𝑥 ∣ ( 𝑓𝑥 ) ⊆ 𝐵 }
21 6 20 elrab2 ( 𝐴 ∈ ( 𝐺𝐵 ) ↔ ( 𝐴𝑥 ∧ ( 𝐴𝑥 ) ⊆ 𝐵 ) )