Metamath Proof Explorer


Theorem inf3lemb

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion inf3lemb ( 𝐹 ‘ ∅ ) = ∅

Proof

Step Hyp Ref Expression
1 inf3lem.1 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
2 inf3lem.2 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω )
3 inf3lem.3 𝐴 ∈ V
4 inf3lem.4 𝐵 ∈ V
5 2 fveq1i ( 𝐹 ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ )
6 0ex ∅ ∈ V
7 fr0g ( ∅ ∈ V → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ )
8 6 7 ax-mp ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ ) = ∅
9 5 8 eqtri ( 𝐹 ‘ ∅ ) = ∅