Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | ||
| inf3lem.3 | ⊢ 𝐴 ∈ V | ||
| inf3lem.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | inf3lemb | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | ⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 2 | inf3lem.2 | ⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) | |
| 3 | inf3lem.3 | ⊢ 𝐴 ∈ V | |
| 4 | inf3lem.4 | ⊢ 𝐵 ∈ V | |
| 5 | 2 | fveq1i | ⊢ ( 𝐹 ‘ ∅ ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ ) |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | fr0g | ⊢ ( ∅ ∈ V → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ ∅ ) = ∅ |
| 9 | 5 8 | eqtri | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |