Step |
Hyp |
Ref |
Expression |
1 |
|
inf3lem.1 |
⊢ 𝐺 = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
2 |
|
inf3lem.2 |
⊢ 𝐹 = ( rec ( 𝐺 , ∅ ) ↾ ω ) |
3 |
|
inf3lem.3 |
⊢ 𝐴 ∈ V |
4 |
|
inf3lem.4 |
⊢ 𝐵 ∈ V |
5 |
|
frsuc |
⊢ ( 𝐴 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) ) ) |
6 |
2
|
fveq1i |
⊢ ( 𝐹 ‘ suc 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝐴 ) |
7 |
2
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) |
8 |
7
|
fveq2i |
⊢ ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝐴 ) ) |
9 |
5 6 8
|
3eqtr4g |
⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ suc 𝐴 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝐴 ) ) ) |