| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inf3lem.1 | ⊢ 𝐺  =  ( 𝑦  ∈  V  ↦  { 𝑤  ∈  𝑥  ∣  ( 𝑤  ∩  𝑥 )  ⊆  𝑦 } ) | 
						
							| 2 |  | inf3lem.2 | ⊢ 𝐹  =  ( rec ( 𝐺 ,  ∅ )  ↾  ω ) | 
						
							| 3 |  | inf3lem.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | inf3lem.4 | ⊢ 𝐵  ∈  V | 
						
							| 5 |  | fveq2 | ⊢ ( 𝐴  =  ∅  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ ∅ ) ) | 
						
							| 6 | 1 2 3 4 | inf3lemb | ⊢ ( 𝐹 ‘ ∅ )  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 8 |  | 0ss | ⊢ ∅  ⊆  𝑥 | 
						
							| 9 | 7 8 | eqsstrdi | ⊢ ( 𝐴  =  ∅  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 10 | 9 | a1d | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 11 |  | nnsuc | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑣  ∈  ω 𝐴  =  suc  𝑣 ) | 
						
							| 12 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 13 | 1 2 12 4 | inf3lemc | ⊢ ( 𝑣  ∈  ω  →  ( 𝐹 ‘ suc  𝑣 )  =  ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑣  ∈  ω  →  ( 𝑢  ∈  ( 𝐹 ‘ suc  𝑣 )  ↔  𝑢  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) ) ) ) | 
						
							| 15 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 16 |  | fvex | ⊢ ( 𝐹 ‘ 𝑣 )  ∈  V | 
						
							| 17 | 1 2 15 16 | inf3lema | ⊢ ( 𝑢  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) )  ↔  ( 𝑢  ∈  𝑥  ∧  ( 𝑢  ∩  𝑥 )  ⊆  ( 𝐹 ‘ 𝑣 ) ) ) | 
						
							| 18 | 17 | simplbi | ⊢ ( 𝑢  ∈  ( 𝐺 ‘ ( 𝐹 ‘ 𝑣 ) )  →  𝑢  ∈  𝑥 ) | 
						
							| 19 | 14 18 | biimtrdi | ⊢ ( 𝑣  ∈  ω  →  ( 𝑢  ∈  ( 𝐹 ‘ suc  𝑣 )  →  𝑢  ∈  𝑥 ) ) | 
						
							| 20 | 19 | ssrdv | ⊢ ( 𝑣  ∈  ω  →  ( 𝐹 ‘ suc  𝑣 )  ⊆  𝑥 ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝐴  =  suc  𝑣  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ suc  𝑣 ) ) | 
						
							| 22 | 21 | sseq1d | ⊢ ( 𝐴  =  suc  𝑣  →  ( ( 𝐹 ‘ 𝐴 )  ⊆  𝑥  ↔  ( 𝐹 ‘ suc  𝑣 )  ⊆  𝑥 ) ) | 
						
							| 23 | 20 22 | syl5ibrcom | ⊢ ( 𝑣  ∈  ω  →  ( 𝐴  =  suc  𝑣  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 24 | 23 | rexlimiv | ⊢ ( ∃ 𝑣  ∈  ω 𝐴  =  suc  𝑣  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 25 | 11 24 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ≠  ∅ )  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) | 
						
							| 26 | 25 | expcom | ⊢ ( 𝐴  ≠  ∅  →  ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) ) | 
						
							| 27 | 10 26 | pm2.61ine | ⊢ ( 𝐴  ∈  ω  →  ( 𝐹 ‘ 𝐴 )  ⊆  𝑥 ) |