Metamath Proof Explorer


Theorem infcl

Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 ( 𝜑𝑅 Or 𝐴 )
infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
Assertion infcl ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 infcl.1 ( 𝜑𝑅 Or 𝐴 )
2 infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
3 df-inf inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 )
4 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
5 1 4 sylib ( 𝜑 𝑅 Or 𝐴 )
6 1 2 infcllem ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
7 5 6 supcl ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 )
8 3 7 eqeltrid ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 )