Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | ||
Assertion | infcl | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infcl.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | infcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) | |
3 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
4 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
5 | 1 4 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
6 | 1 2 | infcllem | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
7 | 5 6 | supcl | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) |
8 | 3 7 | eqeltrid | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |