Step |
Hyp |
Ref |
Expression |
1 |
|
infcvg.1 |
⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } |
2 |
|
infcvg.2 |
⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) |
3 |
|
infcvg.3 |
⊢ 𝑍 ∈ 𝑋 |
4 |
|
infcvg.4 |
⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
5 |
2
|
renegcld |
⊢ ( 𝑦 ∈ 𝑋 → - 𝐴 ∈ ℝ ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = - 𝐴 → ( 𝑥 ∈ ℝ ↔ - 𝐴 ∈ ℝ ) ) |
7 |
5 6
|
syl5ibrcom |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑥 = - 𝐴 → 𝑥 ∈ ℝ ) ) |
8 |
7
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 → 𝑥 ∈ ℝ ) |
9 |
8
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } ⊆ ℝ |
10 |
1 9
|
eqsstri |
⊢ 𝑅 ⊆ ℝ |
11 |
|
eqid |
⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
12 |
11
|
nfth |
⊢ Ⅎ 𝑦 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
13 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑍 → 𝐴 = ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) |
14 |
13
|
negeqd |
⊢ ( 𝑦 = 𝑍 → - 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑦 = 𝑍 → ( - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ↔ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) ) |
16 |
12 15
|
rspce |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ) → ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) |
17 |
3 11 16
|
mp2an |
⊢ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 |
18 |
|
negex |
⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ V |
19 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
20 |
19
|
nfneg |
⊢ Ⅎ 𝑦 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
21 |
20
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 |
22 |
|
eqeq1 |
⊢ ( 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 → ( 𝑥 = - 𝐴 ↔ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) ) |
23 |
21 22
|
rexbid |
⊢ ( 𝑥 = - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) ) |
24 |
18 23
|
elab |
⊢ ( - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } ↔ ∃ 𝑦 ∈ 𝑋 - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 = - 𝐴 ) |
25 |
17 24
|
mpbir |
⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } |
26 |
25 1
|
eleqtrri |
⊢ - ⦋ 𝑍 / 𝑦 ⦌ 𝐴 ∈ 𝑅 |
27 |
26
|
ne0ii |
⊢ 𝑅 ≠ ∅ |
28 |
10 27 4
|
3pm3.2i |
⊢ ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ) |