| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							infcvg.1 | 
							⊢ 𝑅  =  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴 }  | 
						
						
							| 2 | 
							
								
							 | 
							infcvg.2 | 
							⊢ ( 𝑦  ∈  𝑋  →  𝐴  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							infcvg.3 | 
							⊢ 𝑍  ∈  𝑋  | 
						
						
							| 4 | 
							
								
							 | 
							infcvg.4 | 
							⊢ ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑤  ≤  𝑧  | 
						
						
							| 5 | 
							
								2
							 | 
							renegcld | 
							⊢ ( 𝑦  ∈  𝑋  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  - 𝐴  →  ( 𝑥  ∈  ℝ  ↔  - 𝐴  ∈  ℝ ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl5ibrcom | 
							⊢ ( 𝑦  ∈  𝑋  →  ( 𝑥  =  - 𝐴  →  𝑥  ∈  ℝ ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexlimiv | 
							⊢ ( ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴  →  𝑥  ∈  ℝ )  | 
						
						
							| 9 | 
							
								8
							 | 
							abssi | 
							⊢ { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴 }  ⊆  ℝ  | 
						
						
							| 10 | 
							
								1 9
							 | 
							eqsstri | 
							⊢ 𝑅  ⊆  ℝ  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  | 
						
						
							| 12 | 
							
								11
							 | 
							nfth | 
							⊢ Ⅎ 𝑦 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  | 
						
						
							| 13 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑦  =  𝑍  →  𝐴  =  ⦋ 𝑍  /  𝑦 ⦌ 𝐴 )  | 
						
						
							| 14 | 
							
								13
							 | 
							negeqd | 
							⊢ ( 𝑦  =  𝑍  →  - 𝐴  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴 )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  𝑍  →  ( - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴  ↔  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴 ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							rspce | 
							⊢ ( ( 𝑍  ∈  𝑋  ∧  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴 )  →  ∃ 𝑦  ∈  𝑋 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴 )  | 
						
						
							| 17 | 
							
								3 11 16
							 | 
							mp2an | 
							⊢ ∃ 𝑦  ∈  𝑋 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴  | 
						
						
							| 18 | 
							
								
							 | 
							negex | 
							⊢ - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  ∈  V  | 
						
						
							| 19 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑦 ⦋ 𝑍  /  𝑦 ⦌ 𝐴  | 
						
						
							| 20 | 
							
								19
							 | 
							nfneg | 
							⊢ Ⅎ 𝑦 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  | 
						
						
							| 21 | 
							
								20
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑦 𝑥  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  | 
						
						
							| 22 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑥  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  →  ( 𝑥  =  - 𝐴  ↔  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴 ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							rexbid | 
							⊢ ( 𝑥  =  - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴  ↔  ∃ 𝑦  ∈  𝑋 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴 ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							elab | 
							⊢ ( - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴 }  ↔  ∃ 𝑦  ∈  𝑋 - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  =  - 𝐴 )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							mpbir | 
							⊢ - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  ∈  { 𝑥  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  - 𝐴 }  | 
						
						
							| 26 | 
							
								25 1
							 | 
							eleqtrri | 
							⊢ - ⦋ 𝑍  /  𝑦 ⦌ 𝐴  ∈  𝑅  | 
						
						
							| 27 | 
							
								26
							 | 
							ne0ii | 
							⊢ 𝑅  ≠  ∅  | 
						
						
							| 28 | 
							
								10 27 4
							 | 
							3pm3.2i | 
							⊢ ( 𝑅  ⊆  ℝ  ∧  𝑅  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑅 𝑤  ≤  𝑧 )  |