Metamath Proof Explorer


Theorem infcvgaux2i

Description: Auxiliary theorem for applications of supcvg . (Contributed by NM, 4-Mar-2008)

Ref Expression
Hypotheses infcvg.1 𝑅 = { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 }
infcvg.2 ( 𝑦𝑋𝐴 ∈ ℝ )
infcvg.3 𝑍𝑋
infcvg.4 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧
infcvg.5a 𝑆 = - sup ( 𝑅 , ℝ , < )
infcvg.13 ( 𝑦 = 𝐶𝐴 = 𝐵 )
Assertion infcvgaux2i ( 𝐶𝑋𝑆𝐵 )

Proof

Step Hyp Ref Expression
1 infcvg.1 𝑅 = { 𝑥 ∣ ∃ 𝑦𝑋 𝑥 = - 𝐴 }
2 infcvg.2 ( 𝑦𝑋𝐴 ∈ ℝ )
3 infcvg.3 𝑍𝑋
4 infcvg.4 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧
5 infcvg.5a 𝑆 = - sup ( 𝑅 , ℝ , < )
6 infcvg.13 ( 𝑦 = 𝐶𝐴 = 𝐵 )
7 eqid - 𝐵 = - 𝐵
8 6 negeqd ( 𝑦 = 𝐶 → - 𝐴 = - 𝐵 )
9 8 rspceeqv ( ( 𝐶𝑋 ∧ - 𝐵 = - 𝐵 ) → ∃ 𝑦𝑋 - 𝐵 = - 𝐴 )
10 7 9 mpan2 ( 𝐶𝑋 → ∃ 𝑦𝑋 - 𝐵 = - 𝐴 )
11 negex - 𝐵 ∈ V
12 eqeq1 ( 𝑥 = - 𝐵 → ( 𝑥 = - 𝐴 ↔ - 𝐵 = - 𝐴 ) )
13 12 rexbidv ( 𝑥 = - 𝐵 → ( ∃ 𝑦𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦𝑋 - 𝐵 = - 𝐴 ) )
14 11 13 1 elab2 ( - 𝐵𝑅 ↔ ∃ 𝑦𝑋 - 𝐵 = - 𝐴 )
15 10 14 sylibr ( 𝐶𝑋 → - 𝐵𝑅 )
16 1 2 3 4 infcvgaux1i ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤𝑅 𝑤𝑧 )
17 16 suprubii ( - 𝐵𝑅 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) )
18 15 17 syl ( 𝐶𝑋 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) )
19 6 eleq1d ( 𝑦 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ ) )
20 19 2 vtoclga ( 𝐶𝑋𝐵 ∈ ℝ )
21 16 suprclii sup ( 𝑅 , ℝ , < ) ∈ ℝ
22 lenegcon1 ( ( 𝐵 ∈ ℝ ∧ sup ( 𝑅 , ℝ , < ) ∈ ℝ ) → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) )
23 20 21 22 sylancl ( 𝐶𝑋 → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) )
24 18 23 mpbid ( 𝐶𝑋 → - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 )
25 5 24 eqbrtrid ( 𝐶𝑋𝑆𝐵 )