Step |
Hyp |
Ref |
Expression |
1 |
|
infcvg.1 |
⊢ 𝑅 = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 } |
2 |
|
infcvg.2 |
⊢ ( 𝑦 ∈ 𝑋 → 𝐴 ∈ ℝ ) |
3 |
|
infcvg.3 |
⊢ 𝑍 ∈ 𝑋 |
4 |
|
infcvg.4 |
⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 |
5 |
|
infcvg.5a |
⊢ 𝑆 = - sup ( 𝑅 , ℝ , < ) |
6 |
|
infcvg.13 |
⊢ ( 𝑦 = 𝐶 → 𝐴 = 𝐵 ) |
7 |
|
eqid |
⊢ - 𝐵 = - 𝐵 |
8 |
6
|
negeqd |
⊢ ( 𝑦 = 𝐶 → - 𝐴 = - 𝐵 ) |
9 |
8
|
rspceeqv |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ - 𝐵 = - 𝐵 ) → ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
10 |
7 9
|
mpan2 |
⊢ ( 𝐶 ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
11 |
|
negex |
⊢ - 𝐵 ∈ V |
12 |
|
eqeq1 |
⊢ ( 𝑥 = - 𝐵 → ( 𝑥 = - 𝐴 ↔ - 𝐵 = - 𝐴 ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑥 = - 𝐵 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = - 𝐴 ↔ ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) ) |
14 |
11 13 1
|
elab2 |
⊢ ( - 𝐵 ∈ 𝑅 ↔ ∃ 𝑦 ∈ 𝑋 - 𝐵 = - 𝐴 ) |
15 |
10 14
|
sylibr |
⊢ ( 𝐶 ∈ 𝑋 → - 𝐵 ∈ 𝑅 ) |
16 |
1 2 3 4
|
infcvgaux1i |
⊢ ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑤 ≤ 𝑧 ) |
17 |
16
|
suprubii |
⊢ ( - 𝐵 ∈ 𝑅 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ) |
18 |
15 17
|
syl |
⊢ ( 𝐶 ∈ 𝑋 → - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ) |
19 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
20 |
19 2
|
vtoclga |
⊢ ( 𝐶 ∈ 𝑋 → 𝐵 ∈ ℝ ) |
21 |
16
|
suprclii |
⊢ sup ( 𝑅 , ℝ , < ) ∈ ℝ |
22 |
|
lenegcon1 |
⊢ ( ( 𝐵 ∈ ℝ ∧ sup ( 𝑅 , ℝ , < ) ∈ ℝ ) → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) ) |
23 |
20 21 22
|
sylancl |
⊢ ( 𝐶 ∈ 𝑋 → ( - 𝐵 ≤ sup ( 𝑅 , ℝ , < ) ↔ - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) ) |
24 |
18 23
|
mpbid |
⊢ ( 𝐶 ∈ 𝑋 → - sup ( 𝑅 , ℝ , < ) ≤ 𝐵 ) |
25 |
5 24
|
eqbrtrid |
⊢ ( 𝐶 ∈ 𝑋 → 𝑆 ≤ 𝐵 ) |