Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ∈ dom card ) |
2 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
3 |
|
ssdomg |
⊢ ( 𝐴 ∈ dom card → ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) ) |
4 |
1 2 3
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) |
5 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴 ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
7 |
|
numdom |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
8 |
1 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ∈ dom card ) |
9 |
|
unnum |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
10 |
1 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
11 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
12 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
13 |
10 11 12
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
14 |
|
undif1 |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
15 |
|
ssnum |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) |
16 |
1 2 15
|
sylancl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom card ) |
17 |
|
undjudom |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
18 |
16 8 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
19 |
14 18
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
20 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
21 |
13 19 20
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ) |
22 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
23 |
|
sdomdom |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) |
24 |
|
relsdom |
⊢ Rel ≺ |
25 |
24
|
brrelex2i |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → 𝐵 ∈ V ) |
26 |
|
djudom1 |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) |
28 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) |
29 |
28
|
ex |
⊢ ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
30 |
21 29
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
31 |
|
simp2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ 𝐴 ) |
32 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) |
33 |
32
|
ex |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
34 |
31 33
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ ( 𝐵 ⊔ 𝐵 ) ) ) |
35 |
|
djuinf |
⊢ ( ω ≼ 𝐵 ↔ ω ≼ ( 𝐵 ⊔ 𝐵 ) ) |
36 |
35
|
biimpri |
⊢ ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ω ≼ 𝐵 ) |
37 |
|
domrefg |
⊢ ( 𝐵 ∈ dom card → 𝐵 ≼ 𝐵 ) |
38 |
|
infdjuabs |
⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐵 ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
39 |
38
|
3com23 |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ∧ ω ≼ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) |
40 |
39
|
3expia |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ) → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
41 |
37 40
|
mpdan |
⊢ ( 𝐵 ∈ dom card → ( ω ≼ 𝐵 → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
42 |
8 36 41
|
syl2im |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ω ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
43 |
34 42
|
syld |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 ) ) |
44 |
|
domen2 |
⊢ ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) ↔ 𝐴 ≼ 𝐵 ) ) |
45 |
44
|
biimpcd |
⊢ ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → ( ( 𝐵 ⊔ 𝐵 ) ≈ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
46 |
43 45
|
sylcom |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
47 |
30 46
|
syld |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( 𝐵 ⊔ 𝐵 ) → 𝐴 ≼ 𝐵 ) ) |
48 |
|
domnsym |
⊢ ( 𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) |
49 |
27 47 48
|
syl56 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
50 |
22 49
|
mt2d |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) |
51 |
|
domtri2 |
⊢ ( ( 𝐵 ∈ dom card ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom card ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) |
52 |
8 16 51
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ↔ ¬ ( 𝐴 ∖ 𝐵 ) ≺ 𝐵 ) ) |
53 |
50 52
|
mpbird |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ) |
54 |
1
|
difexd |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ∈ V ) |
55 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ∈ V ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
56 |
53 54 55
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
57 |
|
domtr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ 𝐵 ) ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
58 |
21 56 57
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
59 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
60 |
31 58 59
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
61 |
|
djuinf |
⊢ ( ω ≼ ( 𝐴 ∖ 𝐵 ) ↔ ω ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ) |
62 |
60 61
|
sylibr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ω ≼ ( 𝐴 ∖ 𝐵 ) ) |
63 |
|
domrefg |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom card → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) |
64 |
16 63
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) |
65 |
|
infdjuabs |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴 ∖ 𝐵 ) ∧ ( 𝐴 ∖ 𝐵 ) ≼ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
66 |
16 62 64 65
|
syl3anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) |
67 |
|
domentr |
⊢ ( ( 𝐴 ≼ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ∧ ( ( 𝐴 ∖ 𝐵 ) ⊔ ( 𝐴 ∖ 𝐵 ) ) ≈ ( 𝐴 ∖ 𝐵 ) ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) |
68 |
58 66 67
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) |
69 |
|
sbth |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∖ 𝐵 ) ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |
70 |
4 68 69
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |